×

zbMATH — the first resource for mathematics

Some recent results in singular 2-D systems theory. (English) Zbl 0746.93013
Summary: Solvability conditions for the general singular model of 2-D linear systems are established. The general response formula for the general singular model is derived. The concepts of local reachability and local controllability are extended for the singular model. Necessary and sufficient conditions for the local reachability and local controllability are established. The minimum energy control problem for the singular model is solved.
MSC:
93B05 Controllability
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] S. Attasi: Modellisation et traitement de suites a deux indices. IRIA Rap. Laboria, 1975.
[2] E. Fornasini, G. Marchesini: State space realization theory of two-dimensional filters. IEEE Trans. Automat. Control AC-21 (1976), 484-491. · Zbl 0332.93072 · doi:10.1109/TAC.1976.1101305
[3] E. Fornasini, G. Marchesini: Doubly indexed dynamical systems: State space models and structural properties. Math. System Theory 12 (1978), 59-75. · Zbl 0392.93034 · doi:10.1007/BF01776566
[4] T. Kaczorek: General response formula for two-dimensional linear systems with variable coefficients. IEEE Trans. Automat. Control AC-31 (1986), 278-280. · Zbl 0667.93049 · doi:10.1109/TAC.1986.1104238
[5] T. Kaczorek: Singular general model of 2-D systems and its solution. IEEE Trans. Automat. Control AC-33 (1988), 1060- 1061. · Zbl 0699.93061
[6] T. Kaczorek: Singular multidimensional linear discrete systems. Proc. IEEE Internat. Symp. Circuits and Systems Helsinki, June 7-9, 1988, pp. 105-108. · Zbl 0691.93032
[7] T. Kaczorek: Singular Roesser model and reduction to its canonical form. Bull. Polish Acad. Sci. Tech. Sci. 35 (1987), 645-652. · Zbl 0668.93017
[8] T. Kaczorek: General response formula and minimum energy control for general singular model of 2-D systems. IEEE Trans. Automat. Control AC-34 (1989), 433-436. · Zbl 0705.93057 · doi:10.1109/9.52296
[9] T. Kaczorek: General response formula, controllability and observability for singular 2-D linear systems with variable coefficients. Proc. IMACS-IFAC Internat. Symp. Math, and Intal. Models in System Simul. Sept. 3-7, Brussels 1990.
[10] T. Kaczorek: Equivalence of singular 2-D linear models. Bull. Pol. Acad. Sci. Tech. Sci. 37 (1989), 263-267. · Zbl 0716.93030
[11] T. Kaczorek: Existence and uniqueness of solutions and Cayley-Hamilton theorem for general singular model of 2-D systems. Bull. Pol. Acad. Sci. Tech. Sci. 37 (1989) · Zbl 0721.93045
[12] T. Kaczorek: Observability and reconstructibility of singular 2-D systems. Bull. Pol. Acad. Sci. 37 (1989), 531-538. · Zbl 0739.93017
[13] T. Kaczorek: Observers for 2-D singular systems. Bull. Pol. Scad. Sci. Tech. Sci. 37 (1989), 551-556. · Zbl 0739.93018
[14] T. Kaczorek: Shuffle algorithm for singular 2-D systems. Bull. Pol. Acad. Sci. Tech. Sci. 38 (1990)
[15] T. Kaczorek: The linear-quadratic optimal regulator for singular 2-D systems with variable coefficients. IEEE Trans. Automat. Control AC-34 (1989), 565 - 566.
[16] T. Kaczorek, M. Świerkosz: Eigenvalue problem for singular Roesser model. Found. Control Engrg. 14 (1989), 25-37. · Zbl 0699.93057
[17] J. Kurek: The general state-space model for a two-dimensional linear digital system. IEEE Trans. Automat. Control AC-30 (1985), 600-602. · Zbl 0561.93034 · doi:10.1109/TAC.1985.1103998
[18] J. Kurek: Strong observability and strong reconstructibility of a system described by the 2-D Roesser model. Internat. J. Control 47 (1988), 633-541. · Zbl 0644.93007 · doi:10.1080/00207178808906037
[19] F. L. Lewis, B. G. Mertzios: On the analysis of two-dimensional discrete singular systems. Math. Control Signal Systems (1989) · Zbl 0789.93022 · doi:10.1007/BF01190984
[20] R. P. Roesser: A discrete state-space model for linear image processing. IEEE Trans. Automat. Control AC-21 (1975), 1-10. · Zbl 0304.68099 · doi:10.1109/TAC.1975.1100844
[21] M. Šebek M. Bisiacco, E. Fornasini: Controllability and reconstructibility conditions for 2-D systems. IEEE Trans. Automat. Control AC-33 (1988), 496-499. · Zbl 0646.93010 · doi:10.1109/9.1237
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.