×

A variational multiscale immersed meshfree method for fluid structure interactive systems involving shock waves. (English) Zbl 07464517

Summary: We develop an immersed meshfree method under a variational multiscale framework for modeling fluid-structure interactive systems involving shock waves. The proposed method enables flexible non-body-fitted discretization, approximations, and quadrature rules for solid and fluid subdomains. The interfacial compatibility conditions are imposed by a volumetric constraint, which avoids the tedious contour integral and interface tracking. The reproducing kernel particle method (RKPM) is employed for both solid and fluid sub-systems, which allows arbitrary control of the orders of continuity and approximation, as well as flexibility in discretization, making it particularly advantageous for modeling fluid-structure interaction (FSI). In the proposed approach, the fictitious fluid is combined with the foreground solid, forming an “effective solid problem” solved on a moving foreground domain, while the background fluid problem is solved with prescribed solid velocity in the overlapping domain to reduce the leaking instability and mesh sensitivity. The variational multiscale immersed method (VMIM) is employed to enhance accuracy and stability in FS coupling, which leads to a residual-based stabilization. The MUSCL-SCNI shock algorithm provides a natural way of introducing the Riemann solution in the shock algorithm via the SCNI contour integral for desirable accuracy. The employment of SCNI in the proposed framework also provides computational efficiency, accuracy, and stability. Using a larger RKPM support size in the fluid domain can effectively suppress the leaking instability. The effectiveness of the proposed methods is verified in solving several FSI problems with shock waves, and the enhanced stability and accuracy of the proposed methods compared to the classical immersed approach have also been demonstrated.

MSC:

76-XX Fluid mechanics
74-XX Mechanics of deformable solids

Software:

OpenIFEM; RKPM2D
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hughes, T. J.; Liu, W. K.; Zimmermann, T. K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Engrg., 29, 3, 329-349 (1981) · Zbl 0482.76039
[2] Johnson, A. A.; Tezduyar, T. E., Advanced mesh generation and update methods for 3D flow simulations, Comput. Mech., 23, 2, 130-143 (1999) · Zbl 0949.76049
[3] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Engrg., 99, 2-3, 235-394 (1992) · Zbl 0763.73052
[4] Gambirasio, L.; Rizzi, E.; Benson, D. J., Eulerian simulations of perforating gun firing in air at atmospheric pressure: scallop geometry influence on design optimization, Acta Mech., 228, 3, 991-1027 (2017)
[5] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 2, 252-271 (1972) · Zbl 0244.92002
[6] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Engrg., 111, 3-4, 283-303 (1994) · Zbl 0845.73078
[7] Glowinski, R.; Pan, T.-W.; Hesla, T. I.; Joseph, D. D., A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow., 25, 5, 755-794 (1999) · Zbl 1137.76592
[8] Baaijens, F. P., A fictitious domain/mortar element method for fluid-structure interaction, Internat. J. Numer. Methods Fluids, 35, 7, 743-761 (2001) · Zbl 0979.76044
[9] Wang, H.; Belytschko, T., Fluid-structure interaction by the discontinuous-Galerkin method for large deformations, Internat. J. Numer. Methods Engrg., 77, 1, 30-49 (2009) · Zbl 1195.74204
[10] Wang, H.; Chessa, J.; Liu, W. K.; Belytschko, T., The immersed/fictitious element method for fluid-structure interaction: volumetric consistency, compressibility and thin members, Internat. J. Numer. Methods Engrg., 74, 1, 32-55 (2008) · Zbl 1159.74437
[11] Fedkiw, R. P., Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method, J. Comput. Phys., 175, 1, 200-224 (2002) · Zbl 1039.76050
[12] Arienti, M.; Hung, P.; Morano, E.; Shepherd, J. E., A level set approach to Eulerian-Lagrangian coupling, J. Comput. Phys., 185, 1, 213-251 (2003) · Zbl 1047.76567
[13] Cottrell, J. A.; Hughes, T. J.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons: John Wiley & Sons New York · Zbl 1378.65009
[14] Yan, J.; Augier, B.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y., FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration, Comput. & Fluids, 141, 201-211 (2016) · Zbl 1390.76375
[15] Zhu, Q.; Xu, F.; Xu, S.; Hsu, M.-C.; Yan, J., An immersogeometric formulation for free-surface flows with application to marine engineering problems, Comput. Methods Appl. Mech. Engrg., 361, Article 112748 pp. (2020) · Zbl 1442.76019
[16] Zhu, Q.; Yan, J., A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows, Comput. Math. Appl., 81, 532-546 (2021) · Zbl 1460.76564
[17] Wu, M. C.; Muchowski, H. M.; Johnson, E. L.; Rajanna, M. R.; Hsu, M.-C., Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement, Comput. Methods Appl. Mech. Engrg., 357, Article 112556 pp. (2019) · Zbl 1442.74067
[18] Xu, F.; Johnson, E. L.; Wang, C.; Jafari, A.; Yang, C.-H.; Sacks, M. S.; Krishnamurthy, A.; Hsu, M.-C., Computational investigation of left ventricular hemodynamics following bioprosthetic aortic and mitral valve replacement, Mech. Res. Commun., Article 103604 pp. (2020)
[19] Xu, S.; Xu, F.; Kommajosula, A.; Hsu, M.-C.; Ganapathysubramanian, B., Immersogeometric analysis of moving objects in incompressible flows, Comput. & Fluids, 189, 24-33 (2019) · Zbl 07075341
[20] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J. A.; Aggarwal, A.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J., An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Engrg., 284, 1005-1053 (2015) · Zbl 1423.74273
[21] Otoguro, Y.; Mochizuki, H.; Takizawa, K.; Tezduyar, T. E., Space-time variational multiscale isogeometric analysis of a tsunami-shelter vertical-axis wind turbine, Comput. Mech., 66, 6, 1443-1460 (2020) · Zbl 1468.74079
[22] Tonon, P.; Sanches, R. A.K.; Takizawa, K.; Tezduyar, T. E., A linear-elasticity-based mesh moving method with no cycle-to-cycle accumulated distortion, Comput. Mech., 67, 2, 413-434 (2021) · Zbl 07360511
[23] Terahara, T.; Takizawa, K.; Tezduyar, T. E.; Bazilevs, Y.; Hsu, M.-C., Heart valve isogeometric sequentially-coupled FSI analysis with the space-time topology change method, Comput. Mech., 65, 1167-1187 (2020) · Zbl 1462.74119
[24] Takizawa, K.; Tezduyar, T. E.; Kanai, T., Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity, Math. Models Methods Appl. Sci., 27, 04, 771-806 (2017) · Zbl 1361.76017
[25] Kanai, T.; Takizawa, K.; Tezduyar, T. E.; Tanaka, T.; Hartmann, A., Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization, Comput. Mech., 63, 2, 301-321 (2019) · Zbl 1462.76145
[26] Hughes, T. J.; Feijoo, G. R.; Mazzei, L.; Quincy, J.-B., The variational multiscale method-a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166, 1-2, 3-24 (1998) · Zbl 1017.65525
[27] Tezduyar, T. E.; Takizawa, K.; Moorman, C.; Wright, S.; Christopher, J., Space-time finite element computation of complex fluid-structure interactions, Internat. J. Numer. Methods Fluids, 64, 10-12, 1201-1218 (2010) · Zbl 1427.76148
[28] Bazilevs, Y.; Takizawa, K.; Wu, M. C.; Kuraishi, T.; Avsar, R.; Xu, Z.; Tezduyar, T. E., Gas turbine computational flow and structure analysis with isogeometric discretization and a complex-geometry mesh generation method, Comput. Mech., 67, 1, 57-84 (2021) · Zbl 07360493
[29] Takizawa, K.; Tezduyar, T. E.; Avsar, R., A low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state, Comput. Mech., 65, 1567-1591 (2020) · Zbl 1464.74369
[30] Huang, W.-X.; Tian, F.-B., Recent trends and progress in the immersed boundary method, Proc. Inst. Mech. Eng. C, 233, 23-24, 7617-7636 (2019)
[31] Tian, F.-B.; Dai, H.; Luo, H.; Doyle, J. F.; Rousseau, B., Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems, J. Comput. Phys., 258, 451-469 (2014) · Zbl 1349.76274
[32] Janela, J.; Lefebvre, A.; Maury, B., A penalty method for the simulation of fluid-rigid body interaction, ESAIM: Proc., 14, 115-123 (2005) · Zbl 1079.76043
[33] Blanco, P.; Feijoo, R.; Dari, E., A variational framework for fluid-solid interaction problems based on immersed domains: theoretical bases, Comput. Methods Appl. Mech. Engrg., 197, 25-28, 2353-2371 (2008) · Zbl 1158.74347
[34] Wang, X.; Liu, W. K., Extended immersed boundary method using FEM and RKPM, Comput. Methods Appl. Mech. Engrg., 193, 12-14, 305-1321 (2004) · Zbl 1060.74676
[35] Liu, W. K.; Liu, Y.; Farrell, D.; Zhang, L.; Wang, X. S.; Fukui, Y.; Patankar, N.; Zhang, Y.; Bajaj, C.; Lee, J.; Hong, J.; Chen, X.; Huayi, H., Immersed finite element method and its applications to biological systems, Comput. Methods Appl. Mech. Engrg., 195, 13-16, 1722-1749 (2006) · Zbl 1178.76232
[36] Zhang, L.; Gay, M., Immersed finite element method for fluid-structure interactions, J. Fluids Struct., 23, 6, 839-857 (2007)
[37] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method, Comput. Methods Appl. Mech. Engrg., 193, 21-22, 2051-2067 (2004) · Zbl 1067.76576
[38] Zhang, L. T.; Krane, M. H.; Yu, F., Modeling of slightly-compressible isentropic flows and compressibility effects on fluid-structure interactions, Comput. & Fluids, 182, 108-117 (2019) · Zbl 1411.76076
[39] Cheng, J.; Yu, F.; Zhang, L. T., OpenIFEM: a high performance modular open-source software of the immersed finite element method for fluid-structure interactions, CMES Comput. Model. Eng. Sci., 119, 1, 91-124 (2019)
[40] Zhang, L. T., Immersed methods for high Reynolds number fluid-structure interactions, Int. J. Comput. Methods, 14, 6, Article 1750068 pp. (2017) · Zbl 1404.76170
[41] Yang, J.; Wang, X.; Krane, M.; Zhang, L. T., Fully-coupled aeroelastic simulation with fluid compressibility - for application to vocal fold vibration, Comput. Methods Appl. Mech. Engrg., 315, 584-606 (2017) · Zbl 1439.74118
[42] Liu, Y.; Liu, W. K., Rheology of red blood cell aggregation by computer simulation, J. Comput. Phys., 220, 1, 139-154 (2006) · Zbl 1102.92010
[43] Tan, J.; Sohrabi, S.; He, R.; Liu, Y., Numerical simulation of cell squeezing through a micropore by the immersed boundary method, Proc. Inst. Mech. Eng. C, 232, 3, 502-514 (2018)
[44] Nikfar, M.; Razizadeh, M.; Paul, R.; Liu, Y., Multiscale modeling of hemolysis during microfiltration, Microfluid. Nanofluid., 24, 5, 1-13 (2020)
[45] Nikfar, M.; Razizadeh, M.; Zhang, J.; Paul, R.; Wu, Z. J.; Liu, Y., Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model, Artif. Organs, 44, 8, E348-E368 (2020)
[46] Zhang, Z.-Q.; Liu, G.; Khoo, B. C., Immersed smoothed finite element method for two dimensional fluid-structure interaction problems, Internat. J. Numer. Methods Engrg., 90, 10, 1292-1320 (2012) · Zbl 1242.74178
[47] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209, 2, 448-476 (2005) · Zbl 1138.76398
[48] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[49] Wang, X.; Zhang, L. T., Modified immersed finite element method for fully-coupled fluid-structure interactions, Comput. Methods Appl. Mech. Engrg., 267, 150-169 (2013) · Zbl 1286.74034
[50] Zhao, H.; Freund, J. B.; Moser, R. D., A fixed-mesh method for incompressible flow-structure systems with finite solid deformations, J. Comput. Phys., 227, 6, 3114-3140 (2008) · Zbl 1329.74313
[51] Bazilevs, Y.; Kamran, K.; Moutsanidis, G.; Benson, D.; Onate, E., A new formulation for air-blast fluid-structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations, Comput. Mech., 60, 1, 83-100 (2017) · Zbl 1386.74046
[52] Bazilevs, Y.; Moutsanidis, G.; Bueno, J.; Kamran, K.; Kamensky, D.; Hillman, M. C.; Gomez, H.; Chen, J.-S., A new formulation for air-blast fluid-structure interaction using an immersed approach: Part II—coupling of IGA and meshfree discretizations, Comput. Mech., 60, 1, 101-116 (2017) · Zbl 1386.74047
[53] Sulsky, D.; Chen, Z.; Schreyer, H. L., A particle method for history-dependent materials, Comput. Methods Appl. Mech. Engrg., 118, 1-2, 179-196 (1994) · Zbl 0851.73078
[54] Hughes, T. J., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127, 1-4, 387-401 (1995) · Zbl 0866.76044
[55] Huang, T.-H.; Chen, J.-S.; Tupek, M. R.; Koester, J. J.; Beckwith, F. N.; Fang, H. E., A variational multiscale immersed meshfree method for heterogeneous material problems, Comput. Mech., 67, 4, 1059-1097 (2021) · Zbl 1477.74119
[56] Chen, J.-S.; Wu, C.-T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Internat. J. Numer. Methods Engrg., 50, 2, 435-466 (2001) · Zbl 1011.74081
[57] Hillman, M.; Chen, J.-S.; accelerated, An.; convergent, Y., And stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics, Internat. J. Numer. Methods Engrg., 107, 7, 603-630 (2016) · Zbl 1352.74119
[58] Huang, T.-H.; Chen, J.-S.; Wei, H.; Roth, M. J.; Sherburn, J. A.; Bishop, J. E.; Tupek, M. R.; Fang, E. H., A MUSCL-SCNI approach for meshfree modeling of shock waves in fluids, Comput. Part. Mech., 7, 2, 329-350 (2020)
[59] Huang, T.-H.; Wei, H.; Chen, J.-S.; Hillman, M. C., RKPM2D: an open-source implementation of nodally integrated reproducing kernel particle method for solving partial differential equations, Comput. Part. Mech., 7, 2, 393-433 (2020)
[60] Li, S.; Liu, W. K., Meshfree Particle Methods (2007), Springer Science & Business Media: Springer Science & Business Media Berlin
[61] Wei, H.; Chen, J.-S.; Beckwith, F.; Baek, J., A naturally stabilized semi-Lagrangian meshfree formulation for multiphase porous media with application to landslide modeling, J. Eng. Mech., 146, 4, Article 04020012 pp. (2020)
[62] Chen, J.-S.; Baek, J.; Huang, T.-H.; Hillman, M. C., Accelerated and stabilized meshfree method for impact-blast modeling, (Structures Congress 2020 (2020), American Society of Civil Engineers: American Society of Civil Engineers Reston, VA)
[63] Chen, J.-S.; Hillman, M.; Chi, S.-W., Meshfree methods: progress made after 20 years, J. Eng. Mech., 143, 4, Article 04017001 pp. (2017)
[64] Moutsanidis, G.; Koester, J. J.; Tupek, M. R.; Chen, J.-S.; Bazilevs, Y., Treatment of near-incompressibility in meshfree and immersed-particle methods, Comput. Part. Mech., 7, 2, 309-327 (2020)
[65] Lai, M.-C.; Peskin, C. S., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys., 160, 2, 705-719 (2000) · Zbl 0954.76066
[66] Liao, C.-C.; Chang, Y.-W.; Lin, C.-A.; McDonough, J., Simulating flows with moving rigid boundary using immersed-boundary method, Comput. & Fluids, 39, 1, 152-167 (2010) · Zbl 1242.76174
[67] Brooks, A. N.; Hughes, T. J., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 1-3, 199-259 (1982) · Zbl 0497.76041
[68] Hughes, T. J.; Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E.; Hsu, M.-C., Computational cardiovascular analysis with the variational multiscale methods and isogeometric discretization, Parallel Algorithms Comput. Sci. Eng., 151-193 (2020) · Zbl 1454.65119
[69] Codina, R., Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. Methods Appl. Mech. Engrg., 191, 39-40, 4295-4321 (2002) · Zbl 1015.76045
[70] Codoni, D.; Moutsanidis, G.; Hsu, M.-C.; Bazilevs, Y.; Johansen, C.; Korobenko, A., Stabilized methods for high-speed compressible flows: toward hypersonic simulations, Comput. Mech., 67, 3, 785-809 (2021) · Zbl 07422597
[71] Hughes, T. J.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Eng., 73, 2, 173-189 (1989) · Zbl 0697.76100
[72] Hauke, G.; Hughes, T. J., A comparative study of different sets of variables for solving compressible and incompressible flows, Comput. Methods Appl. Mech. Engrg., 153, 1-2, 1-44 (1998) · Zbl 0957.76028
[73] Hauke, G., Simple stabilizing matrices for the computation of compressible flows in primitive variables, Comput. Methods Appl. Mech. Engrg., 190, 51-52, 6881-6893 (2001) · Zbl 0996.76047
[74] Chen, J.-S.; Zhang, X.; Belytschko, T., An implicit gradient model by a reproducing kernel strain regularization in strain localization problems, Comput. Methods Appl. Mech. Engrg., 193, 27-29, 2827-2844 (2004) · Zbl 1067.74564
[75] Brezzi, F.; Bristeau, M.-O.; Franca, L. P.; Mallet, M.; Roge, G., A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. Methods Appl. Mech. Engrg., 96, 1, 117-129 (1992) · Zbl 0756.76044
[76] Nakshatrala, K.; Masud, A.; Hjelmstad, K., On finite element formulations for nearly incompressible linear elasticity, Comput. Mech., 41, 4, 547-561 (2008) · Zbl 1162.74472
[77] Chen, J.-S.; Yoon, S.; Wu, C.-T., Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods, Internat. J. Numer. Methods Engrg., 53, 12, 2587-2615 (2002) · Zbl 1098.74732
[78] Chen, J.-S.; Hu, W.; Puso, M.; Wu, Y.; Zhang, X., Strain smoothing for stabilization and regularization of Galerkin meshfree methods, (Meshfree Methods for Partial Differential Equations III (2007), Springer: Springer Berlin), 57-75 · Zbl 1114.65131
[79] Chen, J.-S.; Hillman, M.; Ruter, M., An arbitrary order variationally consistent integration for Galerkin meshfree methods, Internat. J. Numer. Methods Engrg., 95, 5, 387-418 (2013) · Zbl 1352.65481
[80] Chen, J.-S.; Pan, C.; Wu, C.-T.; Liu, W. K., Reproducing kernel particle methods for large deformation analysis of non-linear structures, Comput. Methods Appl. Mech. Engrg., 139, 14, 195-227 (1996) · Zbl 0918.73330
[81] Zha, G.-C.; Bilgen, E., Numerical solutions of Euler equations by using a new flux vector splitting scheme, Internat. J. Numer. Methods Fluids, 17, 2, 115-144 (1993) · Zbl 0779.76067
[82] Mandal, J.; Panwar, V., Robust HLL-type Riemann solver capable of resovling contact discontinuity, Comput. & Fluids, 63, 148-164 (2012) · Zbl 1365.76164
[83] Roth, M. J.; Chen, J.-S.; Slawson, T. R.; Danielson, K. T., Stable and flux-conserved meshfree formulation to model shocks, Comput. Mech., 57, 5, 773-792 (2016) · Zbl 1382.74070
[84] Roth, M. J.; Chen, J.-S.; Danielson, K. T.; Slawson, T. R., Hydrodynamic meshfree method for high-rate solid dynamics using a Rankine-Hugoniot enhancement in a Riemann-SCNI framework, Internat. J. Numer. Methods Engrg., 108, 12, 1525-1549 (2016)
[85] van Leer, B., Towards the ultimate conservative difference scheme. IV. a new approach to numerical convection, J. Comput. Phys., 23, 3, 276-299 (1977) · Zbl 0339.76056
[86] Chang, S.-M.; Chang, K.-S., On the shock-vortex interaction in Schardin’s problem, Shock Waves, 10, 5, 333-343 (2000) · Zbl 0982.76506
[87] Schardin, H., High frequency cinematography in the shock tube, J. Photogr. Sci., 5, 2, 17-19 (1957)
[88] Gretarsson, J. T.; Kwatra, N.; Fedkiw, R., Numerically stable fluid-structure interactions between compressible flow and solid structures, J. Comput. Phys., 230, 8, 3062-3084 (2011) · Zbl 1316.76070
[89] Giordano, J.; Jourdan, G.; Burtschell, Y.; Medale, M.; Zeitoun, D.; Houas, L., Shock wave impacts on deforming panel, an application of fluid-structure interaction, Shock Waves, 14, 1-2, 103-110 (2005) · Zbl 1178.74054
[90] Guan, P.-C.; Chi, S.-W.; Chen, J.-S.; Slawson, T.; Roth, M. J., Semi-Lagrangian reproducing kernel particle method for fragment-impact problems, Int. J. Impact Eng., 38, 12, 1033-1047 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.