Vortices and waves in light dark matter. (English) Zbl 1486.83075

The article is of evident interest for a very actual area of dark matter research and connection of particle physics with astrophysics and cosmology. The authors argue, that in galactic haloes like the Milky Way, bosonic dark matter particles lighter than 100 eV have a de Broglie wavelength larger than the average inter-particle separation and are therefore well described as a set of classical waves. This applies for example to the QCD axion as well as to lighter axion-like particles as fuzzy dark matter. The authors show that the inerference of waves inside a halo leads to vortices. They became sites where the fluid velocity has a non- vanishing curl. Using analytic methods and numerical simulations the authors proove that 1. In 3 spatial dimensions the generic defects take the form of vortex rings. 2. On average there is about one vortex ring per de Broglie volum. 3. Generically only single winding \(( +/- 1)\) vortices are found in a realistic halo. 4. The density near a vortex scales goes as \(r^2\) while the velocity is going as \(1/r\), where r is the distance to vortex. The authors discusse observational/experimental signatures from vortices and wave interference. In the ultralight regime gravitational lensing by interference substructure lead to flux anomalies of 5–10 % in strongly lensed systems. For QCD axions vortices lead to a diminished signal in some detection experiments but not in others. The authors suggest the measurement of correlation functions by axion detection experiments as a way to probe on the expected interference substructures. The article is well structured, argued and referenced.


83C56 Dark matter and dark energy
83F05 Relativistic cosmology
35C07 Traveling wave solutions
81V25 Other elementary particle theory in quantum theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76B47 Vortex flows for incompressible inviscid fluids
Full Text: DOI arXiv


[1] S. Tremaine and J.E. Gunn, 1979 Dynamical Role of Light Neutral Leptons in Cosmology, https://doi.org/10.1103/PhysRevLett.42.407 Phys. Rev. Lett.42 407
[2] A.H. Guth, M.P. Hertzberg and C. Prescod-WEinstein, 2015 Do Dark Matter Axions Form a Condensate with Long-Range Correlation?, https://doi.org/10.1103/PhysRevD.92.103513 Phys. Rev. D92 103513 [1412.5930]
[3] C.-P. Ma and E. Bertschinger, 1995 Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, https://doi.org/10.1086/176550 Astrophys. J.455 7 [astro-ph/9506072]
[4] D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, 2012 Cosmological Non-Linearities as an Effective Fluid J. Cosmol. Astropart. Phys.2012 07 051 [1004.2488]
[5] M.R. Baldeschi, R. Ruffini and G.B. Gelmini, 1983 On massive fermions and bosons in galactic halos, https://doi.org/10.1016/0370-2693(83)90688-3 Phys. Lett. B122 221
[6] W.H. Press, B.S. Ryden and D.N. Spergel, 1990 Single Mechanism for Generating Large Scale Structure and Providing Dark Missing Matter, https://doi.org/10.1103/PhysRevLett.64.1084 Phys. Rev. Lett.64 1084
[7] S.-J. Sin, 1994 Late time cosmological phase transition and galactic halo as Bose liquid, https://doi.org/10.1103/PhysRevD.50.3650 Phys. Rev. D50 3650 [hep-ph/9205208]
[8] P.J.E. Peebles, 2000 Fluid dark matter, https://doi.org/10.1086/312677 Astrophys. J. Lett.534L127 [astro-ph/0002495]
[9] J. Goodman, 2000 Repulsive dark matter, https://doi.org/10.1016/S1384-1076(00)00015-4 New Astron.5 103 [astro-ph/0003018]
[10] J. Lesgourgues, A. Arbey and P. Salati, 2002 A light scalar field at the origin of galaxy rotation curves, https://doi.org/10.1016/S1387-6473(02)00247-6 New Astron. Rev.46 791
[11] P.-H. Chavanis, 2011 Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: I. Analytical results, https://doi.org/10.1103/PhysRevD.84.043531 Phys. Rev. D84 043531 [1103.2050]
[12] A. Suarez and T. Matos, 2011 Structure Formation with Scalar Field Dark Matter: The Fluid Approach, https://doi.org/10.1111/j.1365-2966.2011.19012.x Mon. Not. Roy. Astron. Soc.416 87 [1101.4039]
[13] R.D. Peccei and H.R. Quinn, 1977 CP Conservation in the Presence of Instantons, https://doi.org/10.1103/PhysRevLett.38.1440 Phys. Rev. Lett.38 1440
[14] J.E. Kim, 1979 Weak Interaction Singlet and Strong CP Invariance, https://doi.org/10.1103/PhysRevLett.43.103 Phys. Rev. Lett.43 103
[15] S. Weinberg, 1978 A New Light Boson?, https://doi.org/10.1103/PhysRevLett.40.223 Phys. Rev. Lett.40 223
[16] F. Wilczek, 1978 Problem of Strong P and T Invariance in the Presence of Instantons, https://doi.org/10.1103/PhysRevLett.40.279 Phys. Rev. Lett.40 279
[17] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, 1980 Can Confinement Ensure Natural CP Invariance of Strong Interactions?, https://doi.org/10.1016/0550-3213(80)90209-6 Nucl. Phys. B166 493
[18] A.R. Zhitnitsky, 1980 On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys.31 260
[19] M. Dine, W. Fischler and M. Srednicki, 1981 A Simple Solution to the Strong CP Problem with a Harmless Axion, https://doi.org/10.1016/0370-2693(81)90590-6 Phys. Lett. B104 199
[20] J. Preskill, M.B. Wise and F. Wilczek, 1983 Cosmology of the Invisible Axion, https://doi.org/10.1016/0370-2693(83)90637-8 Phys. Lett. B120 127
[21] L.F. Abbott and P. Sikivie, 1983 A Cosmological Bound on the Invisible Axion, https://doi.org/10.1016/0370-2693(83)90638-X Phys. Lett. B120 133
[22] M. Dine and W. Fischler, 1983 The Not So Harmless Axion, https://doi.org/10.1016/0370-2693(83)90639-1 Phys. Lett. B120 137
[23] P.W. Graham, I.G. Irastorza, S.K. Lamoreaux, A. Lindner and K.A. van Bibber, 2015 Experimental Searches for the Axion and Axion-Like Particles, https://doi.org/10.1146/annurev-nucl-102014-022120 Ann. Rev. Nucl. Part. Sci.65 485 [1602.00039]
[24] D.J.E. Marsh, 2016 Axion Cosmology, https://doi.org/10.1016/j.physrep.2016.06.005 Phys. Rept.643 1 [1510.07633]
[25] P. Sikivie, Invisible Axion Search Methods, [2003.02206]
[26] P. Svrček and E. Witten, 2006 Axions In String Theory J. High Energy Phys. JHEP06(2006)051 [hep-th/0605206]
[27] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, 2010 String Axiverse, https://doi.org/10.1103/PhysRevD.81.123530 Phys. Rev. D81 123530 [0905.4720]
[28] J. Halverson, C. Long and P. Nath, 2017 Ultralight axion in supersymmetry and strings and cosmology at small scales, https://doi.org/10.1103/PhysRevD.96.056025 Phys. Rev. D96 056025 [1703.07779]
[29] T.C. Bachlechner, K. Eckerle, O. Janssen and M. Kleban, 2019 Axion Landscape Cosmology J. Cosmol. Astropart. Phys.2019 09 062 [1810.02822]
[30] W. Hu, R. Barkana and A. Gruzinov, 2000 Cold and fuzzy dark matter, https://doi.org/10.1103/PhysRevLett.85.1158 Phys. Rev. Lett.85 1158 [astro-ph/0003365]
[31] L. Amendola and R. Barbieri, 2006 Dark matter from an ultra-light pseudo-Goldsone-boson, https://doi.org/10.1016/j.physletb.2006.08.069 Phys. Lett. B642 192 [hep-ph/0509257]
[32] H.-Y. Schive, T. Chiueh and T. Broadhurst, 2014 Cosmic Structure as the Quantum Interference of a Coherent Dark Wave, https://doi.org/10.1038/nphys2996 Nature Phys.10 496 [1406.6586]
[33] J. Veltmaat and J.C. Niemeyer, 2016 Cosmological particle-in-cell simulations with ultralight axion dark matter, https://doi.org/10.1103/PhysRevD.94.123523 Phys. Rev. D94 123523 [1608.00802]
[34] B. Schwabe, J.C. Niemeyer and J.F. Engels, 2016 Simulations of solitonic core mergers in ultralight axion dark matter cosmologies, https://doi.org/10.1103/PhysRevD.94.043513 Phys. Rev. D94 043513 [1606.05151]
[35] L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, 2017 Ultralight scalars as cosmological dark matter, https://doi.org/10.1103/PhysRevD.95.043541 Phys. Rev. D95 043541 [1610.08297]
[36] P. Mocz et al., 2017 Galaxy formation with BECDM — I. Turbulence and relaxation of idealized haloes, https://doi.org/10.1093/mnras/stx1887 Mon. Not. Roy. Astron. Soc.471 4559 [1705.05845]
[37] M. Nori and M. Baldi, 2018 AX-GADGET: a new code for cosmological simulations of Fuzzy Dark Matter and Axion models, https://doi.org/10.1093/mnras/sty1224 Mon. Not. Roy. Astron. Soc.478 3935 [1801.08144]
[38] P. Sikivie and Q. Yang, 2009 Bose-Einstein Condensation of Dark Matter Axions, https://doi.org/10.1103/PhysRevLett.103.111301 Phys. Rev. Lett.103 111301 [0901.1106]
[39] L. Berezhiani and J. Khoury, 2015 Theory of dark matter superfluidity, https://doi.org/10.1103/PhysRevD.92.103510 Phys. Rev. D92 103510 [1507.01019]
[40] J. Fan, 2016 Ultralight Repulsive Dark Matter and BEC, https://doi.org/10.1016/j.dark.2016.10.005 Phys. Dark Univ.14 84 [1603.06580]
[41] S. Alexander and S. Cormack, 2017 Gravitationally bound BCS state as dark matter J. Cosmol. Astropart. Phys.2017 04 005 [1607.08621]
[42] S. Alexander, E. McDonough and D.N. Spergel, 2018 Chiral Gravitational Waves and Baryon Superfluid Dark Matter J. Cosmol. Astropart. Phys.2018 05 003 [1801.07255]
[43] T. Jacobson, 1999 Primordial black hole evolution in tensor scalar cosmology, https://doi.org/10.1103/PhysRevLett.83.2699 Phys. Rev. Lett.83 2699 [astro-ph/9905303] · Zbl 0951.83029
[44] A. Arvanitaki and S. Dubovsky, 2011 Exploring the String Axiverse with Precision Black Hole Physics, https://doi.org/10.1103/PhysRevD.83.044026 Phys. Rev. D83 044026 [1004.3558]
[45] C.F.B. Macedo, P. Pani, V. Cardoso and L.C.B. Crispino, 2013 Into the lair: gravitational-wave signatures of dark matter, https://doi.org/10.1088/0004-637X/774/1/48 Astrophys. J.774 48 [1302.2646]
[46] L. Hui, D. Kabat, X. Li, L. Santoni and S.S.C. Wong, 2019 Black Hole Hair from Scalar Dark Matter J. Cosmol. Astropart. Phys.2019 06 038 [1904.12803]
[47] K. Clough, P.G. Ferreira and M. Lagos, 2019 Growth of massive scalar hair around a Schwarzschild black hole, https://doi.org/10.1103/PhysRevD.100.063014 Phys. Rev. D100 063014 [1904.12783]
[48] D. Baumann, H.S. Chia, J. Stout and L. ter Haar, 2019 The Spectra of Gravitational Atoms J. Cosmol. Astropart. Phys.2019 12 006 [1908.10370]
[49] K. Mukaida, M. Takimoto and M. Yamada, 2017 On Longevity of I-ball/Oscillon J. High Energy Phys. JHEP03(2017)122 [1612.07750] · Zbl 1377.83158
[50] M.H. Namjoo, A.H. Guth and D.I. Kaiser, 2018 Relativistic Corrections to Nonrelativistic Effective Field Theories, https://doi.org/10.1103/PhysRevD.98.016011 Phys. Rev. D98 016011 [1712.00445]
[51] J. Eby, K. Mukaida, M. Takimoto, L.C.R. Wijewardhana and M. Yamada, 2019 Classical nonrelativistic effective field theory and the role of gravitational interactions, https://doi.org/10.1103/PhysRevD.99.123503 Phys. Rev. D99 123503 [1807.09795]
[52] D.J.E. Marsh and P.G. Ferreira, 2010 Ultra-Light Scalar Fields and the Growth of Structure in the Universe, https://doi.org/10.1103/PhysRevD.82.103528 Phys. Rev. D82 103528 [1009.3501]
[53] R. Hlozek, D. Grin, D.J.E. Marsh and P.G. Ferreira, 2015 A search for ultralight axions using precision cosmological data, https://doi.org/10.1103/PhysRevD.91.103512 Phys. Rev. D91 103512 [1410.2896]
[54] X. Li, L. Hui and G.L. Bryan, 2019 Numerical and Perturbative Computations of the Fuzzy Dark Matter Model, https://doi.org/10.1103/PhysRevD.99.063509 Phys. Rev. D99 063509 [1810.01915]
[55] E. Madelung, 1927 Quantentheorie in hydrodynamischer form, https://doi.org/10.1007/BF01400372 Z. Phys.40 322 · JFM 52.0969.06
[56] R.P. Feynman, R.B. Leighton and M. Sands, 1963 The Feynman Lectures on Physics, http://www.feynmanlectures.info/http://www.feynmanlectures.info/
[57] W. Thomson, VI. — On vortex motion, https://doi.org/10.1017/S0080456800028179 Trans. Roy. Soc. Edin.25 (1868) 217 · JFM 01.0341.02
[58] B. Damski and K. Sacha, 2003 Changes of the topological charge of vortices, https://doi.org/10.1088/0305-4470/36/9/311 J. Phys. A36 2339 · Zbl 1041.81513
[59] H.M. Nilsen, G. Baym and C.J. Pethick, 2006 Velocity of vortices in inhomogeneous Bose-Einstein condensates, https://doi.org/10.1073/pnas.0602541103 Proc. Nat. Acad. Sci.103 7978 · Zbl 1160.82364
[60] L.M. Widrow and N. Kaiser, 1993 Using the Schrödinger equation to simulate collisionless matter Astrophys J. Lett.416 L71
[61] P. Mocz, L. Lancaster, A. Fialkov, F. Becerra and P.-H. Chavanis, 2018 Schrödinger-Poisson-Vlasov-Poisson correspondence, https://doi.org/10.1103/PhysRevD.97.083519 Phys. Rev. D97 083519 [1801.03507]
[62] C. Uhlemann, C. Rampf, M. Gosenca and O. Hahn, 2019 Semiclassical path to cosmic large-scale structure, https://doi.org/10.1103/PhysRevD.99.083524 Phys. Rev. D99 083524 [1812.05633]
[63] H.B. Nielsen and P. Olesen, 1973 Vortex Line Models for Dual Strings, https://doi.org/10.1016/0550-3213(73)90350-7 Nucl. Phys. B61 45
[64] M. Lüscher, 1981 Symmetry Breaking Aspects of the Roughening Transition in Gauge Theories, https://doi.org/10.1016/0550-3213(81)90423-5 Nucl. Phys. B180 317
[65] L. Onsager, 1949 Statistical hydrodynamics, https://doi.org/10.1007/bf02780991 Nuovo Cim.6 279
[66] A.L. Fetter, 2008 Rotating trapped Bose-Einstein condensates, https://doi.org/10.1007/s11490-008-1001-6 Laser Phys.18 1 [0801.2952]
[67] J. Polchinski and A. Strominger, 1991 Effective string theory, https://doi.org/10.1103/PhysRevLett.67.1681 Phys. Rev. Lett.67 1681 · Zbl 0990.81715
[68] F. Lund, 1991 Defect dynamics for the nonlinear schrödinger equation derived from a variational principle, https://doi.org/10.1016/0375-9601(91)90518-D Phys. Lett. A159 245
[69] S. Dubovsky, R. Flauger and V. Gorbenko, 2012 Effective String Theory Revisited J. High Energy Phys. JHEP09(2012)044 [1203.1054]
[70] O. Aharony and Z. Komargodski, 2013 The Effective Theory of Long Strings J. High Energy Phys. JHEP05(2013)118 [1302.6257] · Zbl 1342.81366
[71] B. Horn, A. Nicolis and R. Penco, 2015 Effective string theory for vortex lines in fluids and superfluids J. High Energy Phys. JHEP10(2015)153 [1507.05635] · Zbl 1388.81549
[72] M.P. Silverman and R.L. Mallett, 2002 Dark matter as a cosmic Bose-Einstein condensate and possible superfluid, https://doi.org/10.1023/A:1015934027224 Gen. Rel. Grav.34 633 · Zbl 0998.83071
[73] M.N. Brook and P. Coles, Gravitational Stability of Vortices in Bose-Einstein Condensate Dark Matter, [0902.0605]
[74] B. Kain and H.Y. Ling, 2010 Vortices in Bose-Einstein Condensate Dark Matter, https://doi.org/10.1103/PhysRevD.82.064042 Phys. Rev. D82 064042 [1004.4692]
[75] T. Rindler-Daller and P.R. Shapiro, 2012 Angular Momentum and Vortex Formation in Bose-Einstein-Condensed Cold Dark Matter Haloes, https://doi.org/10.1111/j.1365-2966.2012.20588.x Mon. Not. Roy. Astron. Soc.422 135 [1106.1256]
[76] N.T. Zinner, 2011 Vortex Structures in a Rotating BEC Dark Matter Component, https://doi.org/10.1155/2011/734543 Phys. Res. Int.2011 734543 [1108.4290]
[77] N. Banik and P. Sikivie, 2013 Axions and the Galactic Angular Momentum Distribution, https://doi.org/10.1103/PhysRevD.88.123517 Phys. Rev. D88 123517 [1307.3547]
[78] T. Chiueh, T.-P. Woo, H.-Y. Jian and H.-Y. Schive, 2011 Vortex turbulence in linear Schrödinger wave mechanics, https://doi.org/10.1088/0953-4075/44/11/115101 J. Phys. B44 115101 [0910.2791]
[79] J.H.H. Chan, H.-Y. Schive, S.-K. Wong, T. Chiueh and T. Broadhurst, 2020 Multiple Images and Flux Ratio Anomaly of Fuzzy Gravitational Lenses, https://doi.org/10.1103/PhysRevLett.125.111102 Phys. Rev. Lett.125 111102 [2002.10473]
[80] P.A.M. Dirac, 1931 Quantised singularities in the electromagnetic field,, https://doi.org/10.1098/rspa.1931.0130 Proc. Roy. Soc. Lond. A133 60 · Zbl 0002.30502
[81] P. Duren, W. Hengartner and R.S. Laugesen, 1996 The argument principle for harmonic functions, https://doi.org/10.2307/2974933 Am. Math. Mon.103 411 · Zbl 0863.31001
[82] I. Bialynicki-Birula, Z. Bialynicka-Birula and C. Śliwa, 2000 Motion of vortex lines in quantum mechanics, https://doi.org/10.1103/PhysRevA.61.032110 Phys. Rev. A61 032110 [quant-ph/9911007]
[83] U. Niederer, 1972 The maximal kinematical invariance group of the free Schrödinger equation., https://doi.org/10.5169/seals-114417 Helv. Phys. Acta45 802
[84] D.T. Son, 2008 Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrödinger symmetry, https://doi.org/10.1103/PhysRevD.78.046003 Phys. Rev. D78 046003 [0804.3972]
[85] A. Derevianko, 2018 Detecting dark-matter waves with a network of precision-measurement tools, https://doi.org/10.1103/PhysRevA.97.042506 Phys. Rev. A97 042506 [1605.09717]
[86] J.W. Foster, N.L. Rodd and B.R. Safdi, 2018 Revealing the Dark Matter Halo with Axion Direct Detection, https://doi.org/10.1103/PhysRevD.97.123006 Phys. Rev. D97 123006 [1711.10489]
[87] G.P. Centers et al., Stochastic fluctuations of bosonic dark matter, [1905.13650]
[88] J.M. Bardeen, J.R. Bond, N. Kaiser and A.S. Szalay, 1986 The Statistics of Peaks of Gaussian Random Fields, https://doi.org/10.1086/164143 Astrophys. J.304 15
[89] H.-Y. Schive et al., 2014 Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3 D Simulations, https://doi.org/10.1103/PhysRevLett.113.261302 Phys. Rev. Lett.113 261302 [1407.7762]
[90] P. Mocz and S. Succi, 2015 Numerical solution of the nonlinear Schrödinger equation using smoothed-particle hydrodynamics, https://doi.org/10.1103/PhysRevE.91.053304 Phys. Rev. E91 053304 [1503.03869]
[91] J. Veltmaat, J.C. Niemeyer and B. Schwabe, 2018 Formation and structure of ultralight bosonic dark matter halos, https://doi.org/10.1103/PhysRevD.98.043509 Phys. Rev. D98 043509 [1804.09647]
[92] F. Edwards, E. Kendall, S. Hotchkiss and R. Easther, 2018 PyUltraLight: A Pseudo-Spectral Solver for Ultralight Dark Matter Dynamics J. Cosmol. Astropart. Phys.2018 10 027 [1807.04037]
[93] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, 1996 A density-based algorithm for discovering clusters in large spatial databases with noise, pp. 226-231, AAAI Press
[94] M. Bartelmann, 2010 Gravitational Lensing, https://doi.org/10.1088/0264-9381/27/23/233001 Class. Quant. Grav.27 233001 [1010.3829] · Zbl 1207.83002
[95] S.-d. Mao and P. Schneider, 1998 Evidence for substructure in lens galaxies?, https://doi.org/10.1046/j.1365-8711.1998.01319.x Mon. Not. Roy. Astron. Soc.295 587 [astro-ph/9707187]
[96] M. Chiba, 2002 Probing dark matter substructure in lens galaxies, https://doi.org/10.1086/324493 Astrophys. J.565 17 [astro-ph/0109499]
[97] R. Metcalf and P. Madau, 2001 Compound gravitational lensing as a probe of dark matter substructure within galaxy halos, https://doi.org/10.1086/323695 Astrophys. J.563 9 [astro-ph/0108224]
[98] N. Dalal and C.S. Kochanek, 2002 Direct detection of CDM substructure, https://doi.org/10.1086/340303 Astrophys. J.572 25 [astro-ph/0111456]
[99] C.S. Kochanek and N. Dalal, 2004 Tests for substructure in gravitational lenses, https://doi.org/10.1086/421436 Astrophys. J.610 69 [astro-ph/0302036]
[100] S. Mao, Y.-P. Jing, J.P. Ostriker and J. Weller, 2004 Anomalous flux ratios in gravitational lenses: For or against CDM?, https://doi.org/10.1086/383413 Astrophys. J. Lett.604L5 [astro-ph/0402149]
[101] A. Amara, R. Metcalf, T.J. Cox and O.J. P., 2006 Simulations of strong gravitational lensing with substructure, https://doi.org/10.1111/j.1365-2966.2006.10053.x Mon. Not. Roy. Astron. Soc.367 1367 [astro-ph/0411587]
[102] Y.D. Hezaveh et al., 2016 Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81, https://doi.org/10.3847/0004-637X/823/1/37 Astrophys. J.823 37 [1601.01388]
[103] S. Alexander, J.J. Bramburger and E. McDonough, 2019 Dark Disk Substructure and Superfluid Dark Matter, https://doi.org/10.1016/j.physletb.2019.134871 Phys. Lett. B797 134871 [1901.03694]
[104] S. Alexander, S. Gleyzer, E. McDonough, M.W. Toomey and E. Usai, 2020 Deep Learning the Morphology of Dark Matter Substructure, https://doi.org/10.3847/1538-4357/ab7925 Astrophys. J.893 15 [1909.07346]
[105] A. Maleki, S. Baghram and S. Rahvar, 2020 Investigation of two colliding solitonic cores in Fuzzy Dark Matter models, https://doi.org/10.1103/PhysRevD.101.023508 Phys. Rev. D101 023508 [1911.00486]
[106] P. Schneider, J. Ehlers and E.E. Falco, 1992 Gravitational Lenses, https://doi.org/10.1007/978-3-662-03758-4Springer
[107] L. Dai et al., 2020 Asymmetric Surface Brightness Structure of Caustic Crossing Arc in SDSS J1226+2152: A Case for Dark Matter Substructure, https://doi.org/10.1093/mnras/staa1355 Mon. Not. Roy. Astron. Soc.495 3192 [2001.00261]
[108] Y. Hezaveh, N. Dalal, G. Holder, T. Kisner, M. Kuhlen and L. Perreault Levasseur, 2016 Measuring the power spectrum of dark matter substructure using strong gravitational lensing J. Cosmol. Astropart. Phys.2016 11 048 [1403.2720]
[109] A. Diaz Rivero, F.-Y. Cyr-Racine and C. Dvorkin, 2018 Power spectrum of dark matter substructure in strong gravitational lenses, https://doi.org/10.1103/PhysRevD.97.023001 Phys. Rev. D97 023001 [1707.04590]
[110] K. Van Tilburg, A.-M. Taki and N. Weiner, 2018 Halometry from Astrometry J. Cosmol. Astropart. Phys.2018 07 041 [1804.01991]
[111] C. Mondino, A.-M. Taki, K. Van Tilburg and N. Weiner, 2020 First Results on Dark Matter Substructure from Astrometric Weak Lensing, https://doi.org/10.1103/PhysRevLett.125.111101 Phys. Rev. Lett.125 111101 [2002.01938]
[112] S. Mishra-Sharma, K. Van Tilburg and N. Weiner, 2020 Power of halometry, https://doi.org/10.1103/PhysRevD.102.023026 Phys. Rev. D102 023026 [2003.02264]
[113] I.G. Irastorza and J. Redondo, 2018 New experimental approaches in the search for axion-like particles, https://doi.org/10.1016/j.ppnp.2018.05.003 Prog. Part. Nucl. Phys.102 89 [1801.08127]
[114] P.W. Graham and S. Rajendran, 2013 New Observables for Direct Detection of Axion Dark Matter, https://doi.org/10.1103/PhysRevD.88.035023 Phys. Rev. D88 035023 [1306.6088]
[115] ADMX collaboration, 2018 A Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment, https://doi.org/10.1103/PhysRevLett.120.151301 Phys. Rev. Lett.120 151301 [1804.05750]
[116] P. Sikivie, 1983 Experimental Tests of the Invisible Axion, https://doi.org/10.1103/PhysRevLett.51.1415 Phys. Rev. Lett.51 1415 [Erratum ibid 52 (1984) 695]
[117] Y. Kahn, B.R. Safdi and J. Thaler, 2016 Broadband and Resonant Approaches to Axion Dark Matter Detection, https://doi.org/10.1103/PhysRevLett.117.141801 Phys. Rev. Lett.117 141801 [1602.01086]
[118] J.L. Ouellet et al., 2019 First Results from ABRACADABRA-10 cm: A Search for Sub-μeV Axion Dark Matter, https://doi.org/10.1103/PhysRevLett.122.121802 Phys. Rev. Lett.122 121802 [1810.12257]
[119] H. Liu, B.D. Elwood, M. Evans and J. Thaler, 2019 Searching for Axion Dark Matter with Birefringent Cavities, https://doi.org/10.1103/PhysRevD.100.023548 Phys. Rev. D100 023548 [1809.01656]
[120] E. Savalle et al., Novel approaches to dark-matter detection using space-time separated clocks, [1902.07192]
[121] D. Martynov and H. Miao, 2020 Quantum-enhanced interferometry for axion searches, https://doi.org/10.1103/PhysRevD.101.095034 Phys. Rev. D101 095034 [1911.00429]
[122] D. Budker, P.W. Graham, M. Ledbetter, S. Rajendran and A. Sushkov, 2014 Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr), https://doi.org/10.1103/PhysRevX.4.021030 Phys. Rev. X4 021030 [1306.6089]
[123] D.F. Jackson Kimball et al., 2020 Overview of the Cosmic Axion Spin Precession Experiment (CASPEr), https://doi.org/10.1007/978-3-030-43761-9_13 Springer Proc. Phys.245 105 [1711.08999]
[124] W.A. Terrano, E.G. Adelberger, C.A. Hagedorn and B.R. Heckel, 2019 Constraints on axionlike dark matter with masses down to 10−23 eV/c2, https://doi.org/10.1103/PhysRevLett.122.231301 Phys. Rev. Lett.122 231301 [1902.04246]
[125] M.P. Hertzberg and E.D. Schiappacasse, 2018 Scalar dark matter clumps with angular momentum J. Cosmol. Astropart. Phys.2018 08 028 [1804.07255]
[126] N.C. Amorisco and A. Loeb, First constraints on Fuzzy Dark Matter from the dynamics of stellar streams in the Milky Way, [1808.00464]
[127] B.V. Church, J.P. Ostriker and P. Mocz, 2019 Heating of Milky Way disc Stars by Dark Matter Fluctuations in Cold Dark Matter and Fuzzy Dark Matter Paradigms, https://doi.org/10.1093/mnras/stz534 Mon. Not. Roy. Astron. Soc.485 2861 [1809.04744]
[128] B. Bar-Or, J.-B. Fouvry and S. Tremaine, 2019 Relaxation in a Fuzzy Dark Matter Halo, https://doi.org/10.3847/1538-4357/aaf28c Astrophys. J.871 28 [1809.07673]
[129] D.J.E. Marsh and J.C. Niemeyer, 2019 Strong Constraints on Fuzzy Dark Matter from Ultrafaint Dwarf Galaxy Eridanus II, https://doi.org/10.1103/PhysRevLett.123.051103 Phys. Rev. Lett.123 051103 [1810.08543]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.