On the distinction between fractal and seasonal dependencies in time series data. (English) Zbl 07468068


62-XX Statistics
86-XX Geophysics


longmemo; TSA; ltsa
Full Text: DOI


[1] Brown, C. and Liebovitch, L., Fractal Analysis, , Vol. 165 (Sage, Thousand Oaks, CA, 2010).
[2] Kaplan, D. and Glass, L., Understanding Nonlinear Dynamics (Springer, New York, 1995). · Zbl 0823.34002
[3] Lauwerier, H., Fractals: Endlessly Repeated Geometrical Figures (Princeton University Press, Princeton, NJ, 1991). · Zbl 0765.58002
[4] Mandelbrot, B. B., The Fractal Geometry of Nature (McMillan, New York, 1983).
[5] Bak, P., How Nature Works: The Science of Self-Organized Criticality (Springer, New York, 1996). · Zbl 0894.00007
[6] Feder, J., Fractals (Plenum Press, New York, 1988). · Zbl 0648.28006
[7] Peng, C. K., Mietus, J., Hausdorff, J. M., Havlin, S., Stanley, H. E. and Goldberger, A. L., Long-range anti-correlations and non-Gaussian behavior of the heartbeat, Phys. Rev. Lett.70 (1993) 1343-1346.
[8] Van Orden, G. C., Holden, J. G. and Turvey, M. T., Human cognition and \(1/f\) scaling, J. Exp. Psychol.134(1) (2005) 117-123.
[9] Aks, D. J. and Sprott, J. C., The role of depth and \(1/f\) dynamics in perceiving reversible figures, Nonlinear Dyn. Psychol. Life Sci.7 (2003) 161-180. · Zbl 1201.91171
[10] Chen, Y., Ding, M. and Kelso, J. A., Long memory processes \((1/ f^\alpha\) type) in human coordination, Phys. Rev. Lett.79(22) (1997) 4501-4504.
[11] Box-Steffensmeier, J. M. and Smith, R. M., Investigating political dynamics using fractional integration methods, Am. J. Polit. Sci.42(2) (1998) 661-689.
[12] Eisinga, R., Franses, P. H. and Ooms, M., Forecasting long memory left-right political orientations, Int. J. Forecast.15(2) (1999) 185-199.
[13] Koopmans, M., A dynamical view of high school attendance: An assessment of short-term and long-term dependencies in five urban schools, Nonlinear Dyn. Psychol. Life Sci.19(1) (2015) 65-80.
[14] Koopmans, M., On the pervasiveness of long range memory processes in daily high school attendance rates.Nonlinear Dyn. Psychol. Life Sci.22(2) (2018) 243-262.
[15] Mandelbrot, B. B., Fractals and Scaling in Finance: Discontinuity, Concentration, Risk (Springer, New York, 1997). · Zbl 1005.91001
[16] Sowell, F., Modeling long-run behavior with the fractional ARFIMA model, J. Monet. Econ.29(2) (1992) 277-302.
[17] Stadnitski, T., Measuring fractality, Front. Physiol.3 (2012) 127.
[18] Kauffman, S. A., The Origins of Order: Self-Organization and Selection in Evolution (Oxford University Press, New York, 1993).
[19] Delignières, D., Torre, K. and Lemoine, L., Methodological issues in the application of monofractal analysis in psychological and behavioral research, Nonlinear Dyn. Psychol. Life Sci.9 (2005) 435-461.
[20] Taqqu, M. S., Teverovsky, V. and Willinger, W., Estimators of long-range dependence: An empirical study, Fractals3(4) (1995) 785-803. · Zbl 0864.62061
[21] Stadnytska, T., Braun, S. and Werner, J., Analyzing fractal dynamics employing R, Nonlinear Dyn. Psychol. Life Sci.14(2) (2010) 117-144.
[22] Higuchi, T., Approach to an irregular time series on the basis of the fractal theory, Physica D31 (1988) 277-283. · Zbl 0649.58046
[23] Granger, C. W. J. and Joyeux, R., An introduction to long-memory time series models and fractional differencing, J. Time Ser. Anal.1(1) (1980) 15-29. · Zbl 0503.62079
[24] Eke, A., Hermán, P., Bassingthwaighte, J. B., Raymond, G. M., Perival, D. B., Cannon, M., Balla, I. and Ikrényi, C., Physiological time series: Distinguishing fractal noises from motions, Pflügers Arch.439 (2000) 402-415.
[25] Hurst, H. E., The problem of long-term storage in reservoirs, Hydrol. Sci.1(3) (1956) 13-27, https://doi.org/10.1080/02626665609493644.
[26] Koopmans, M., Using Time Series to Analyze Long-Range Fractal Patterns, , Vol. 185 (Sage, Thousand Oaks, CA, 2021).
[27] Box, G. and Jenkins, G., Time Series Analysis: Forecasting and Control (Holden-Day, San Francisco, 1970). · Zbl 0249.62009
[28] Beran, J., Statistics for Long-Memory Processes (Chapman-Hall, New York, 1994). · Zbl 0869.60045
[29] Stadnitski, T., Some critical aspects of fractality research, Nonlinear Dyn. Psychol. Life Sci.16(2) (2012) 137-158.
[30] Cryer, J. D. and Chan, K. S., Time Series Analysis: With Applications in R, 2nd edn. (Springer, New York, 2008). · Zbl 1137.62366
[31] Shumway, R. H. and Stoffer, D. S., Time Series and Its Applications, 3rd edn. (Springer, New York, 2011). · Zbl 1276.62054
[32] Bloomfield, P., Fourier Analysis for Time Series: An Introduction (Wiley, New York, 1976). · Zbl 0353.62051
[33] Stadnitski, T., in The Fractal Geometry of the Brain, ed. Di Leva, A. (Springer, New York, 2016).
[34] Geweke, J. and Porter-Hudak, S., The estimation and application of long memory in time series models, J. Time Ser. Anal.4(4) (1983) 221-238. · Zbl 0534.62062
[35] Reisen, V. A., Estimation of the fractional difference parameter in the ARFIMA \((pdq)\) model using the smoothed periodogram, J. Time Ser. Anal.15(3) (1994) 335-350. · Zbl 0803.62084
[36] Clarke, H. D. and Lebo, M., Fractional (co)integ-ration and governing part support in Britain, Br. J. Polit. Sci.33 (2003) 283-301.
[37] McLeod, A. I., Yu, H. and Krougly, Z. L., Algorithms for linear time series analysis: With R package, J. Stat. Softw.23(5) (2007) 1-26.
[38] Hamilton, P., Pollock, J. E., Mitchell, D. A., Vincenzi, A. E. and West, B. J., The application of nonlinear dynamics to nursing research, Nonlinear Dyn. Psychol. Life Sci.1 (1997) 237-261.
[39] Said, S. E. and Dickey, D. A., Testing for unit roots in autoregressive—Moving average models of unknown order, Biometrika71 (1984) 599-608. · Zbl 0564.62075
[40] Kwiatkowski, D., Phillips, P. C. B., Schmidt, P. and Shin, Y., Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?J. Econom.54 (1992) 159-178. · Zbl 0871.62100
[41] Wijnants, M. L., Cox, R. F. A., Hasselman, F., Bosman, A. M. T. and Van Orden, G., Does sample rate introduce an artifact in spectral analysis of continuous processes?Front. Physiol.3 (2012) 495, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549522/.
[42] M. Demetrescu and U. Hassler, Effect of neglected deterministic seasonality on unit root tests, Stat. Papers48 (2007) 385-402. · Zbl 1125.62099
[43] Porter-Hudak, S., An application of the seasonal fractionally differenced model to the monetary aggregates, J. Am. Stat. Assoc.85(410) (1990) 338-344.
[44] J. Q. Veenstra, Persistence and anti-persistence: Theory and software, Doctoral Dissertation, Electronic Thesis and Dissertation Repository, Western University, (2013), Paper 1119.
[45] Wagenmakers, E. J., Farrell, S. and Ratcliff, R., Estimation and interpretation of \(1/ f^\alpha\) noise in human cognition, Psych. Bull. Rev.11(4) (2004) 579-615.
[46] Taqqu, M. S. and Teverovksy, V., in A Practical Guide to Heavy Tails, eds. Adler, R., Feldman, R. B. and Taqqu, M. S. (Birkhauser, Boston, 1997).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.