On the expected production of gravitational waves during preheating. (English) Zbl 07468502


83-XX Relativity and gravitational theory
Full Text: DOI arXiv


[1] LIGO Scientific and Virgo collaboration, 2016 Observation of gravitational waves from a binary black hole merger, https://doi.org/10.1103/PhysRevLett.116.061102 Phys. Rev. Lett.116 061102 [1602.03837]
[2] LIGO Scientific and Virgo collaboration, 2016 GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence, https://doi.org/10.1103/PhysRevLett.116.241103 Phys. Rev. Lett.116 241103 [1606.04855]
[3] LIGO Scientific and Virgo collaboration, 2017 GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, https://doi.org/10.1103/PhysRevLett.118.221101 Phys. Rev. Lett.118 221101 [Erratum ibid 121 (2018) 129901] [1706.01812]
[4] LIGO Scientific and Virgo collaboration, 2017 GW170608: observation of a 19-solar-mass binary black hole coalescence, https://doi.org/10.3847/2041-8213/aa9f0c Astrophys. J.851 L35 [1711.05578]
[5] LIGO Scientific and Virgo collaboration, 2017 GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence, https://doi.org/10.1103/PhysRevLett.119.141101 Phys. Rev. Lett.119 141101 [1709.09660]
[6] LIGO Scientific and Virgo collaboration, 2017 GW170817: observation of gravitational waves from a binary neutron star inspiral, https://doi.org/10.1103/PhysRevLett.119.161101 Phys. Rev. Lett.119 161101 [1710.05832]
[7] L. Kofman, A.D. Linde and A.A. Starobinsky, 1997 Towards the theory of reheating after inflation, https://doi.org/10.1103/PhysRevD.56.3258 Phys. Rev. D 56 3258 [hep-ph/9704452]
[8] R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine and A. Mazumdar, 2010 Reheating in inflationary cosmology: theory and applications, https://doi.org/10.1146/annurev.nucl.012809.104511 Ann. Rev. Nucl. Part. Sci.60 27 [1001.2600]
[9] M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, 2014 Nonperturbative dynamics of reheating after inflation: a review, https://doi.org/10.1142/S0218271815300037 Int. J. Mod. Phys. D 24 1530003 [1410.3808] · Zbl 1308.83155
[10] R. Easther and E.A. Lim, 2006 Stochastic gravitational wave production after inflation J. Cosmol. Astropart. Phys.2006 04 010 [astro-ph/0601617]
[11] R. Easther, J.T. Giblin, Jr. and E.A. Lim, 2007 Gravitational wave production at the end of inflation, https://doi.org/10.1103/PhysRevLett.99.221301 Phys. Rev. Lett.99 221301 [astro-ph/0612294]
[12] M.C. Guzzetti, N. Bartolo, M. Liguori and S. Matarrese, 2016 Gravitational waves from inflation, https://doi.org/10.1393/ncr/i2016-10127-1 Riv. Nuovo Cim.39 399 [1605.01615]
[13] C. Caprini and D.G. Figueroa, 2018 Cosmological backgrounds of gravitational waves, https://doi.org/10.1088/1361-6382/aac608 Class. Quant. Grav.35 163001 [1801.04268] · Zbl 1409.83039
[14] S.Y. Khlebnikov and I.I. Tkachev, 1997 Relic gravitational waves produced after preheating, https://doi.org/10.1103/PhysRevD.56.653 Phys. Rev. D 56 653 [hep-ph/9701423]
[15] G.N. Felder and I. Tkachev, 2008 LATTICEEASY: a program for lattice simulations of scalar fields in an expanding universe, https://doi.org/10.1016/j.cpc.2008.02.009 Comput. Phys. Commun.178 929 [hep-ph/0011159] · Zbl 1196.83005
[16] A.V. Frolov, 2008 DEFROST: a new code for simulating preheating after inflation J. Cosmol. Astropart. Phys.2008 11 009 [0809.4904]
[17] R. Easther, H. Finkel and N. Roth, 2010 PSpectRe: a pseudo-spectral code for (p)reheating J. Cosmol. Astropart. Phys.2010 10 025 [1005.1921]
[18] Z. Huang, 2011 The art of lattice and gravity waves from preheating, https://doi.org/10.1103/PhysRevD.83.123509 Phys. Rev. D 83 123509 [1102.0227]
[19] S. Weinberg, 2005 Quantum contributions to cosmological correlations, https://doi.org/10.1103/PhysRevD.72.043514 Phys. Rev. D 72 043514 [hep-th/0506236]
[20] R.A. Isaacson, 1968 Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor, https://doi.org/10.1103/PhysRev.166.1272 Phys. Rev.1661272
[21] P. Adshead, R. Easther and E.A. Lim, 2009 The “in-in” formalism and cosmological perturbations, https://doi.org/10.1103/PhysRevD.80.083521 Phys. Rev. D 80 083521 [0904.4207]
[22] S. Weinberg, 2011 Ultraviolet divergences in cosmological correlations, https://doi.org/10.1103/PhysRevD.83.063508 Phys. Rev. D 83 063508 [1011.1630]
[23] W. Pauli and F. Villars, 1949 On the invariant regularization in relativistic quantum theory, https://doi.org/10.1103/RevModPhys.21.434 Rev. Mod. Phys.21 434 · Zbl 0037.12503
[24] T. Appelquist and J. Carazzone, 1975 Infrared singularities and massive fields, https://doi.org/10.1103/PhysRevD.11.2856 Phys. Rev. D 11 2856
[25] F. Arroja and T. Tanaka, 2011 A note on the role of the boundary terms for the non-Gaussianity in general k-inflation J. Cosmol. Astropart. Phys.2011 05 005 [1103.1102]
[26] G. ’t Hooft and M.J.G. Veltman, 1974 One loop divergencies in the theory of gravitation Ann Inst. H. Poincaré Phys. Theor. A 20 69 · Zbl 1422.83019
[27] M. Asorey, E.V. Gorbar and I.L. Shapiro, 2003 Universality and ambiguities of the conformal anomaly, https://doi.org/10.1088/0264-9381/21/1/011 Class. Quant. Grav.21 163 [hep-th/0307187] · Zbl 1061.83048
[28] D.V. Vassilevich, 2003 Heat kernel expansion: user’s manual, https://doi.org/10.1016/j.physrep.2003.09.002 Phys. Rept.388 279 [hep-th/0306138] · Zbl 1042.81093
[29] J.W. York, Jr., 1972 Role of conformal three geometry in the dynamics of gravitation, https://doi.org/10.1103/PhysRevLett.28.1082 Phys. Rev. Lett.28 1082
[30] G.W. Gibbons and S.W. Hawking, 1977 Action integrals and partition functions in quantum gravity, https://doi.org/10.1103/PhysRevD.15.2752 Phys. Rev. D 15 2752
[31] A.C. Hindmarsh et al., 2005 SUNDIALS: suite of nonlinear and differential/algebraic equation solvers, https://doi.org/10.1145/1089014.1089020 ACM Trans. Math. Softw.31 363 · Zbl 1136.65329
[32] T. Hahn, 2005 CUBA: a library for multidimensional numerical integration, https://doi.org/10.1016/j.cpc.2005.01.010 Comput. Phys. Commun.168 78 [hep-ph/0404043] · Zbl 1196.65052
[33] D.G. Figueroa and F. Torrenti, 2017 Gravitational wave production from preheating: parameter dependence J. Cosmol. Astropart. Phys.2017 10 057 [1707.04533]
[34] E.W. Kolb and M.S. Turner, 1990 The early universe Front Phys. 69 1
[35] Planck collaboration, Planck 2018 results. X. Constraints on inflation, [1807.06211]
[36] J. Martin, C. Ringeval and V. Vennin, 2014 Encyclopædia Inflationaris, https://doi.org/10.1016/j.dark.2014.01.003 Phys. Dark Univ.5-675 [1303.3787]
[37] C.J. Moore, R.H. Cole and C.P.L. Berry, 2015 Gravitational-wave sensitivity curves, https://doi.org/10.1088/0264-9381/32/1/015014 Class. Quant. Grav.32 015014 [1408.0740]
[38] Gravitational wave detectors and sources webpage, http://www.gwplotter.com/
[39] J.F. Dufaux, A. Bergman, G.N. Felder, L. Kofman and J.-P. Uzan, 2007 Theory and numerics of gravitational waves from preheating after inflation, https://doi.org/10.1103/PhysRevD.76.123517 Phys. Rev. D 76 123517 [0707.0875]
[40] E. Calzetta and B.L. Hu, 1987 Closed time path functional formalism in curved space-time: application to cosmological back reaction problems, https://doi.org/10.1103/PhysRevD.35.495 Phys. Rev. D 35 495
[41] J. Berges, 2004 Introduction to nonequilibrium quantum field theory, https://doi.org/10.1063/1.1843591 AIP Conf. Proc.7393 [hep-ph/0409233]
[42] S. Weinberg, 1996 The quantum theory of fields. Volume 2: modern applications, Cambridge University Press, Cambridge, U.K.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.