×

Constraints on the distance duality relation with standard sirens. (English) Zbl 1484.83129

MSC:

83F05 Relativistic cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C35 Gravitational waves
85A15 Galactic and stellar structure
81V35 Nuclear physics
68R05 Combinatorics in computer science

Software:

Cobaya; CAMB; polychord
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] LIGO Scientific and Virgo collaborations, 2016 Observation of gravitational waves from a binary black hole merger, https://doi.org/10.1103/PhysRevLett.116.061102 Phys. Rev. Lett.116 061102 [1602.03837]
[2] B.F. Schutz, 1986 Determining the Hubble constant from gravitational wave observations, https://doi.org/10.1038/323310a0 Nature323 310
[3] D.E. Holz and S.A. Hughes, 2005 Using gravitational-wave standard sirens, https://doi.org/10.1086/431341 Astrophys. J.629 15 [astro-ph/0504616]
[4] N. Dalal, D.E. Holz, S.A. Hughes and B. Jain, 2006 Short GRB and binary black hole standard sirens as a probe of dark energy, https://doi.org/10.1103/PhysRevD.74.063006 Phys. Rev. D74 063006 [astro-ph/0601275]
[5] LIGO Scientific and Virgo collaborations, 2017 GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, https://doi.org/10.1103/PhysRevLett.119.161101 Phys. Rev. Lett.119 161101 [1710.05832]
[6] LIGO Scientific, Virgo, Fermi-GBM and INTEGRAL collaborations, 2017 Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, https://doi.org/10.3847/2041-8213/aa920c Astrophys. J. Lett.848 L13 [1710.05834]
[7] J.M. Ezquiaga and M. Zumalacárregui, 2017 Dark Energy After GW170817: Dead Ends and the Road Ahead, https://doi.org/10.1103/PhysRevLett.119.251304 Phys. Rev. Lett.119 251304 [1710.05901]
[8] P. Creminelli and F. Vernizzi, 2017 Dark Energy after GW170817 and GRB170817A, https://doi.org/10.1103/PhysRevLett.119.251302 Phys. Rev. Lett.119 251302 [1710.05877]
[9] LIGO Scientific, Virgo, 1M2H, Dark Energy Camera GW-E, DES, DLT40, Las Cumbres Observatory, VINROUGE and MASTER collaborations, 2017 A gravitational-wave standard siren measurement of the Hubble constant, https://doi.org/10.1038/nature24471 Nature551 85 [1710.05835]
[10] H.-Y. Chen, M. Fishbach and D.E. Holz, 2018 A two per cent Hubble constant measurement from standard sirens within five years, https://doi.org/10.1038/s41586-018-0606-0 Nature562 545 [1712.06531]
[11] S. Mukherjee, B.D. Wandelt and J. Silk, 2020 Probing the theory of gravity with gravitational lensing of gravitational waves and galaxy surveys, https://doi.org/10.1093/mnras/staa827 Mon. Not. Roy. Astron. Soc.494 1956 [1908.08951]
[12] S. Mukherjee, B.D. Wandelt and J. Silk, 2020 Multimessenger tests of gravity with weakly lensed gravitational waves, https://doi.org/10.1103/PhysRevD.101.103509 Phys. Rev. D101 103509 [1908.08950]
[13] S. Mukherjee, B.D. Wandelt, S.M. Nissanke and A. Silvestri, Accurate and precision Cosmology with redshift unknown gravitational wave sources, [2007.02943]
[14] M. Maggiore et al., 2020 Science Case for the Einstein Telescope J. Cosmol. Astropart. Phys.2020 03 050 [1912.02622]
[15] S. Hild et al., 2011 Sensitivity Studies for Third-Generation Gravitational Wave Observatories, https://doi.org/10.1088/0264-9381/28/9/094013 Class. Quant. Grav.28 094013 [1012.0908]
[16] Planck collaboration, 2020 Planck 2018 results. VI. Cosmological parameters, https://doi.org/10.1051/0004-6361/201833910 Astron. Astrophys.641 A6 [1807.06209]
[17] DES collaboration, 2019 Dark Energy Survey Year 1 Results: Constraints on Extended Cosmological Models from Galaxy Clustering and Weak Lensing, https://doi.org/10.1103/PhysRevD.99.123505 Phys. Rev. D99 123505 [1810.02499]
[18] R.F.L. Holanda, J.A.S. Lima and M.B. Ribeiro, 2010 Testing the Distance-Duality Relation with Galaxy Clusters and Type Ia Supernovae, https://doi.org/10.1088/2041-8205/722/2/L233 Astrophys. J. Lett.722 L233 [1005.4458]
[19] A. Avgoustidis, C. Burrage, J. Redondo, L. Verde and R. Jimenez, 2010 Constraints on cosmic opacity and beyond the standard model physics from cosmological distance measurements J. Cosmol. Astropart. Phys.2010 10 024 [1004.2053]
[20] R.F.L. Holanda, R.S. Gonçalves and J.S. Alcaniz, 2012 A test for cosmic distance duality J. Cosmol. Astropart. Phys.2012 06 022 [1201.2378]
[21] K. Liao, A. Avgoustidis and Z. Li, 2015 Is the Universe Transparent?, https://doi.org/10.1103/PhysRevD.92.123539 Phys. Rev. D92 123539 [1512.01861]
[22] K. Liao, Z. Li, S. Cao, M. Biesiada, X. Zheng and Z.-H. Zhu, 2016 The Distance Duality Relation From Strong Gravitational Lensing, https://doi.org/10.3847/0004-637X/822/2/74 Astrophys. J.822 74 [1511.01318]
[23] K. Liao, 2019 The cosmic distance duality relation with strong lensing and gravitational waves: an opacity-free test, https://doi.org/10.3847/1538-4357/ab4819 Astrophys. J.885 70 [1906.09588]
[24] C. Bogdanos and S. Nesseris, 2009 Genetic Algorithms and Supernovae Type Ia Analysis J. Cosmol. Astropart. Phys.2009 05 006 [0903.2805]
[25] S. Nesseris and J. García-Bellido, 2012 A new perspective on Dark Energy modeling via Genetic Algorithms J. Cosmol. Astropart. Phys.2012 11 033 [1205.0364]
[26] G.F.R. Ellis, 1933 On the definition of distance in general relativity: I.M.H. Etherington (Philosophical Magazine ser. 7, vol. 15, 761), https://doi.org/10.1007/s10714-006-0355-5 Gen. Rel. Grav.39 2007 1047 · Zbl 1157.83310
[27] B.A. Bassett and M. Kunz, 2004 Cosmic distance-duality as a probe of exotic physics and acceleration, https://doi.org/10.1103/PhysRevD.69.101305 Phys. Rev. D69 101305 [astro-ph/0312443]
[28] P. Tiwari, 2017 Constraining axionlike particles using the distance-duality relation, https://doi.org/10.1103/PhysRevD.95.023005 Phys. Rev. D95 023005 [1610.06583]
[29] XENON collaboration, 2020 Excess electronic recoil events in XENON1T, https://doi.org/10.1103/PhysRevD.102.072004 Phys. Rev. D102 072004 [2006.09721]
[30] L. Di Luzio, M. Fedele, M. Giannotti, F. Mescia and E. Nardi, 2020 Solar axions cannot explain the XENON1T excess, https://doi.org/10.1103/PhysRevLett.125.131804 Phys. Rev. Lett.125 131804 [2006.12487]
[31] A.E. Robinson, XENON1T observes tritium, [2006.13278]
[32] C. Csáki, N. Kaloper and J. Terning, 2002 Dimming supernovae without cosmic acceleration, https://doi.org/10.1103/PhysRevLett.88.161302 Phys. Rev. Lett.88 161302 [hep-ph/0111311]
[33] C. Deffayet, D. Harari, J.-P. Uzan and M. Zaldarriaga, 2002 Dimming of supernovae by photon pseudoscalar conversion and the intergalactic plasma, https://doi.org/10.1103/PhysRevD.66.043517 Phys. Rev. D66 043517 [hep-ph/0112118]
[34] A. Avgoustidis, L. Verde and R. Jimenez, 2009 Consistency among distance measurements: transparency, BAO scale and accelerated expansion J. Cosmol. Astropart. Phys.2009 06 012 [0902.2006]
[35] EUCLID collaboration, Euclid: Forecast constraints on the cosmic distance duality relation with complementary external probes, [2007.16153]
[36] A. Hees, O. Minazzoli and J. Larena, 2014 Breaking of the equivalence principle in the electromagnetic sector and its cosmological signatures, https://doi.org/10.1103/PhysRevD.90.124064 Phys. Rev. D90 124064 [1406.6187]
[37] R. Angulo, C.M. Baugh, C.S. Frenk and C.G. Lacey, 2008 The detectability of baryonic acoustic oscillations in future galaxy surveys, https://doi.org/10.1111/j.1365-2966.2007.12587.x Mon. Not. Roy. Astron. Soc.383 755 [astro-ph/0702543]
[38] S. Anselmi, G.D. Starkman, P.-S. Corasaniti, R.K. Sheth and I. Zehavi, 2018 Galaxy Correlation Functions Provide a More Robust Cosmological Standard Ruler, https://doi.org/10.1103/PhysRevLett.121.021302 Phys. Rev. Lett.121 021302 [1703.01275]
[39] S. Anselmi, P.-S. Corasaniti, G.D. Starkman, R.K. Sheth and I. Zehavi, 2018 Linear point standard ruler for galaxy survey data: Validation with mock catalogs, https://doi.org/10.1103/PhysRevD.98.023527 Phys. Rev. D98 023527 [1711.09063]
[40] LIGO Scientific and Virgo collaborations, 2019 GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, https://doi.org/10.1103/PhysRevX.9.031040 Phys. Rev. X9 031040 [1811.12907]
[41] LIGO Scientific and Virgo collaborations, 2020 GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ \(3.4 M_⊙\), https://doi.org/10.3847/2041-8213/ab75f5 Astrophys. J. Lett.892 L3 [2001.01761]
[42] LIGO Scientific and Virgo collaborations, 2020 GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses, https://doi.org/10.1103/PhysRevD.102.043015 Phys. Rev. D102 043015 [2004.08342]
[43] M. Maggiore, 2007 Gravitational Waves: Volume 1: Theory and Experiments, Oxford University Press,
[44] LSST Science and LSST Project collaborations, LSST Science Book, Version 2.0, [0912.0201]
[45] DESI collaboration, The DESI Experiment Part I: Science,Targeting, and Survey Design, [1611.00036]
[46] B.S. Sathyaprakash, B.F. Schutz and C. Van Den Broeck, 2010 Cosmography with the Einstein Telescope, https://doi.org/10.1088/0264-9381/27/21/215006 Class. Quant. Grav.27 215006 [0906.4151] · Zbl 1204.83036
[47] W. Zhao, C. Van Den Broeck, D. Baskaran and T.G.F. Li, 2011 Determination of Dark Energy by the Einstein Telescope: Comparing with CMB, BAO and SNIa Observations, https://doi.org/10.1103/PhysRevD.83.023005 Phys. Rev. D83 023005 [1009.0206]
[48] M. Du, W. Yang, L. Xu, S. Pan and D.F. Mota, 2019 Future constraints on dynamical dark-energy using gravitational-wave standard sirens, https://doi.org/10.1103/PhysRevD.100.043535 Phys. Rev. D100 043535 [1812.01440]
[49] J. Torrado and A. Lewis, Cobaya: Code for Bayesian Analysis of hierarchical physical models, [2005.05290]
[50] A. Lewis, A. Challinor and A. Lasenby, 2000 Efficient computation of CMB anisotropies in closed FRW models, https://doi.org/10.1086/309179 Astrophys. J.538 473 [astro-ph/9911177]
[51] C. Howlett, A. Lewis, A. Hall and A. Challinor, 2012 CMB power spectrum parameter degeneracies in the era of precision cosmology J. Cosmol. Astropart. Phys.2012 04 027 [1201.3654]
[52] SNLS collaboration, 2011 Supernova Constraints and Systematic Uncertainties from the First 3 Years of the Supernova Legacy Survey, https://doi.org/10.1088/0067-0049/192/1/1 Astrophys. J. Suppl.192 1 [1104.1443]
[53] W.K. Hastings, 1970 Monte Carlo Sampling Methods using Markov Chains and their Applications, https://doi.org/10.1093/biomet/57.1.97 Biometrika57 97 · Zbl 0219.65008
[54] W.J. Handley, M.P. Hobson and A.N. Lasenby, 2015 PolyChord: nested sampling for cosmology, https://doi.org/10.1093/mnrasl/slv047 Mon. Not. Roy. Astron. Soc.450 L61 [1502.01856]
[55] W.J. Handley, M.P. Hobson and A.N. Lasenby, 2015 polychord: next-generation nested sampling, https://doi.org/10.1093/mnras/stv1911 Mon. Not. Roy. Astron. Soc.453 4385 [1506.00171]
[56] E. Belgacem, Y. Dirian, S. Foffa and M. Maggiore, 2018 Gravitational-wave luminosity distance in modified gravity theories, https://doi.org/10.1103/PhysRevD.97.104066 Phys. Rev. D97 104066 [1712.08108]
[57] E. Belgacem, Y. Dirian, S. Foffa and M. Maggiore, 2018 Modified gravitational-wave propagation and standard sirens, https://doi.org/10.1103/PhysRevD.98.023510 Phys. Rev. D98 023510 [1805.08731]
[58] LISA Cosmology Working Group collaboration, 2019 Testing modified gravity at cosmological distances with LISA standard sirens J. Cosmol. Astropart. Phys.2019 07 024 [1906.01593]
[59] A. Garoffolo et al., Detecting Dark Energy Fluctuations with Gravitational Waves, [2007.13722]
[60] G.W. Horndeski, 1974 Second-order scalar-tensor field equations in a four-dimensional space, https://doi.org/10.1007/BF01807638 Int. J. Theor. Phys.10 363
[61] C. Dalang and L. Lombriser, 2019 Limitations on Standard Sirens tests of gravity from screening J. Cosmol. Astropart. Phys.2019 10 013 [1906.12333]
[62] S. Tsujikawa, 2007 Matter density perturbations and effective gravitational constant in modified gravity models of dark energy, https://doi.org/10.1103/PhysRevD.76.023514 Phys. Rev. D76 023514 [0705.1032]
[63] S. Nesseris, 2009 Matter density perturbations in modified gravity models with arbitrary coupling between matter and geometry, https://doi.org/10.1103/PhysRevD.79.044015 Phys. Rev. D79 044015 [0811.4292]
[64] S. Nesseris and A. Mazumdar, 2009 Newton’s constant in f(R,\(R_μ\) νR^μ\nu, R) theories of gravity and constraints from BBN, https://doi.org/10.1103/PhysRevD.79.104006 Phys. Rev. D79 104006 [0902.1185]
[65] R. Arjona, W. Cardona and S. Nesseris, 2019 Unraveling the effective fluid approach for f(R) models in the subhorizon approximation, https://doi.org/10.1103/PhysRevD.99.043516 Phys. Rev. D99 043516 [1811.02469]
[66] R. Arjona, W. Cardona and S. Nesseris, 2019 Designing Horndeski and the effective fluid approach, https://doi.org/10.1103/PhysRevD.100.063526 Phys. Rev. D100 063526 [1904.06294]
[67] E. Gaztanaga, E. Garcia-Berro, J. Isern, E. Bravo and I. Dominguez, 2002 Bounds on the possible evolution of the gravitational constant from cosmological type-IA supernovae, https://doi.org/10.1103/PhysRevD.65.023506 Phys. Rev. D65 023506 [astro-ph/0109299]
[68] S. Nesseris and L. Perivolaropoulos, 2006 Evolving Newton’s constant, extended gravity theories and SNIa data analysis, https://doi.org/10.1103/PhysRevD.73.103511 Phys. Rev. D73 103511 [astro-ph/0602053]
[69] E. Calabrese et al., 2014 Dark Energy coupling with electromagnetism as seen from future low-medium redshift probes, https://doi.org/10.1103/PhysRevD.89.083509 Phys. Rev. D89 083509 [1311.5841]
[70] L. Lombriser, 2014 Constraining chameleon models with cosmology, https://doi.org/10.1002/andp.201400058 Annalen Phys.526 259 [1403.4268] · Zbl 1297.83054
[71] T. Baker et al., The Novel Probes Project — Tests of Gravity on Astrophysical Scales, [1908.03430]
[72] H. Desmond and P.G. Ferreira, 2020 Galaxy morphology rules out astrophysically relevant Hu-Sawicki f(R) gravity, https://doi.org/10.1103/PhysRevD.102.104060 Phys. Rev. D102 104060 [2009.08743]
[73] B.S. Wright and B. Li, 2018 Type Ia supernovae, standardizable candles, and gravity, https://doi.org/10.1103/PhysRevD.97.083505 Phys. Rev. D97 083505 [1710.07018]
[74] S. Nesseris, G. Pantazis and L. Perivolaropoulos, 2017 Tension and constraints on modified gravity parametrizations of Geff(z) from growth rate and Planck data, https://doi.org/10.1103/PhysRevD.96.023542 Phys. Rev. D96 023542 [1703.10538]
[75] C. Bambi, M. Giannotti and F.L. Villante, 2005 The response of primordial abundances to a general modification of G(N) and/or of the early Universe expansion rate, https://doi.org/10.1103/PhysRevD.71.123524 Phys. Rev. D71 123524 [astro-ph/0503502]
[76] T.P. Sotiriou and V. Faraoni, 2010 f(R) Theories Of Gravity, https://doi.org/10.1103/RevModPhys.82.451 Rev. Mod. Phys.82 451 [0805.1726] · Zbl 1205.83006
[77] P. Brax, C. van de Bruck, A.-C. Davis and D.J. Shaw, 2008 f(R) Gravity and Chameleon Theories, https://doi.org/10.1103/PhysRevD.78.104021 Phys. Rev. D78 104021 [0806.3415]
[78] A.I. Vainshtein, 1972 To the problem of nonvanishing gravitation mass, https://doi.org/10.1016/0370-2693(72)90147-5 Phys. Lett. B39 393
[79] C. Deffayet, G.R. Dvali, G. Gabadadze and A.I. Vainshtein, 2002 Nonperturbative continuity in graviton mass versus perturbative discontinuity, https://doi.org/10.1103/PhysRevD.65.044026 Phys. Rev. D65 044026 [hep-th/0106001]
[80] J. Beltran Jimenez, F. Piazza and H. Velten, 2016 Evading the Vainshtein Mechanism with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from Binary Pulsars, https://doi.org/10.1103/PhysRevLett.116.061101 Phys. Rev. Lett.116 061101 [1507.05047]
[81] C. Dalang, P. Fleury and L. Lombriser, 2020 Horndeski and the sirens, https://doi.org/10.1103/PhysRevD.102.044036 Phys. Rev. D102 044036 [1912.06117]
[82] Y. Akrami, P. Scott, J. Edsjo, J. Conrad and L. Bergstrom, 2010 A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms J. High Energy Phys. JHEP04(2010)057 [0910.3950] · Zbl 1272.81204
[83] R. Arjona and S. Nesseris, 2020 What can Machine Learning tell us about the background expansion of the Universe?, https://doi.org/10.1103/PhysRevD.101.123525 Phys. Rev. D101 123525 [1910.01529]
[84] R. Arjona and S. Nesseris, 2020 Hints of dark energy anisotropic stress using Machine Learning J. Cosmol. Astropart. Phys.2020 11 042 [2001.11420]
[85] R. Arjona, 2020 Machine learning meets the redshift evolution of the CMB temperature J. Cosmol. Astropart. Phys.2020 08 009 [2002.12700]
[86] S. Nesseris and A. Shafieloo, 2010 A model independent null test on the cosmological constant, https://doi.org/10.1111/j.1365-2966.2010.17254.x Mon. Not. Roy. Astron. Soc.408 1879 [1004.0960]
[87] S. Nesseris and J. García-Bellido, 2013 Comparative analysis of model-independent methods for exploring the nature of dark energy, https://doi.org/10.1103/PhysRevD.88.063521 Phys. Rev. D88 063521 [1306.4885]
[88] D. Sapone, E. Majerotto and S. Nesseris, 2014 Curvature versus distances: Testing the FLRW cosmology, https://doi.org/10.1103/PhysRevD.90.023012 Phys. Rev. D90 023012 [1402.2236]
[89] P. Astier et al., 2014 Extending the supernova Hubble diagram to z ∼ 1.5 with the Euclid space mission, https://doi.org/10.1051/0004-6361/201423551 Astron. Astrophys.572 A80 [1409.8562]
[90] Y. Gong, A. Cooray and X. Chen, 2010 Cosmology with Photometric Surveys of Type Ia Supernovae, https://doi.org/10.1088/0004-637X/709/2/1420 Astrophys. J.709 1420 [0909.2692]
[91] E. Poisson and C.M. Will, 1995 Gravitational waves from inspiraling compact binaries: Parameter estimation using second postNewtonian wave forms, https://doi.org/10.1103/PhysRevD.52.848 Phys. Rev. D52 848 [gr-qc/9502040]
[92] L. Blanchet, 2014 Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, https://doi.org/10.12942/lrr-2014-2 Living Rev. Rel.17 2 [1310.1528] · Zbl 1316.83003
[93] R.-G. Cai and T. Yang, 2017 Estimating cosmological parameters by the simulated data of gravitational waves from the Einstein Telescope, https://doi.org/10.1103/PhysRevD.95.044024 Phys. Rev. D95 044024 [1608.08008]
[94] T.G.F. Li, 2013 Extracting Physics from Gravitational Waves: Testing the Strong-field Dynamics of General Relativity and Inferring the Large-scale Structure of the Universe, Ph.D. Thesis, Vrije University, Amsterdam, The Netherlands
[95] S.-J. Jin, D.-Z. He, Y. Xu, J.-F. Zhang and X. Zhang, 2020 Forecast for cosmological parameter estimation with gravitational-wave standard siren observation from the Cosmic Explorer J. Cosmol. Astropart. Phys.2020 03 051 [2001.05393]
[96] T. Yang, R.F.L. Holanda and B. Hu, 2019 Constraints on the cosmic distance duality relation with simulated data of gravitational waves from the Einstein Telescope, https://doi.org/10.1016/j.astropartphys.2019.01.005 Astropart. Phys.108 57 [1710.10929]
[97] C. Cutler and D.E. Holz, 2009 Ultra-high precision cosmology from gravitational waves, https://doi.org/10.1103/PhysRevD.80.104009 Phys. Rev. D80 104009 [0906.3752]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.