×

Semigroups and ordered categories. I: The reduced case. (English) Zbl 0747.18007

Inverse semigroups can be described as groupoids (= small categories of isomorphisms) which are ordered in a special way. In particular, this order relation induces the structure of a semilattice on the set of idempotents of the groupoid. This idea can be generalized to regular semigroups. One has to consider a different type of inductive groupoid, where the idempotents acquire the structure of a regular biordered set. These known results and ideas serve as a starting point for the author. In this Part I of a longer paper main emphasis is on generalizing the above results on inverse semigroups. Groupoids are replaced by a more general kind of (ordered) categories.

MSC:

18B40 Groupoids, semigroupoids, semigroups, groups (viewed as categories)
20M50 Connections of semigroups with homological algebra and category theory
20M17 Regular semigroups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Armstrong, S., The structure of type A semigroups, (Semigroup Forum, 29 (1984)), 319-336 · Zbl 0546.20057
[2] Armstrong, S., The Structure of Concordant Semigroups, Ph.D. Thesis (1985), York
[3] Ash, C. J., Finite semigroups with commuting idempotents, J. Austral. Math. Soc. Ser. A, 43, 81-90 (1987) · Zbl 0634.20032
[4] de Barros, C. M., Catégories ordonnées régulières, groupoides ordonnés réguliers et groupes généralisés, C. R. Acad. Sci. Paris, 264, 813-816 (1967) · Zbl 0146.25105
[5] de Barros, C. M., Quelques structures algébriques définies par des lois de compositions partielles et associatives, C. R. Acad. Sci. Paris, 265, 163-166 (1967) · Zbl 0212.35501
[6] de Barros, C. M., Sur les catégories ordonnés régulières, Cahiers Topologie Géom. Différentielle, 11, 23-55 (1969) · Zbl 0201.02103
[7] Batbedat, A.; Fountain, J. B., Connections between left adequate semigroups and γ-semigroups, (Semigroup Forum, 22 (1981)), 59-65 · Zbl 0453.20051
[8] Benzaken, C.; Mayr, H. C., Notion de demi-bande: Demi-bandes de type deux, (Semigroup Forum, 10 (1975)), 115-128 · Zbl 0303.20041
[9] Blyth, T. S.; Janowitz, M. F., Residuation Theory (1972), Pergamon · Zbl 0301.06001
[10] Dorofeeva, M. P., Hereditary and semi-hereditary monoids, (Semigroup Forum, 4 (1972)), 301-311 · Zbl 0259.20059
[11] Ehresmann, C., (Ehresmann, A. C., Oeuvres complètes et commentées (1980-1984)), Suppl. Cahiers Top Géom. Diff., Amiens · Zbl 0452.01017
[12] El-qallali, A., Structure Theory for Abundant and Related Semigroups, Ph.D. Thesis (1980), York
[13] El-Qallali, A.; Fountain, J. B., Idempotent-connected abundant semigroups, (Proc. Roy. Soc. Edinburgh Sect. A, 91 (1981)), 79-90 · Zbl 0501.20043
[14] Fountain, J. B., Right PP monoids with central idempotents, (Semigroup Forum, 13 (1977)), 229-237 · Zbl 0353.20051
[15] Fountain, J. B., A class of right PP monoids, Quart. J. Math., 28, 285-300 (1977) · Zbl 0377.20051
[16] Fountain, J. B., Adequate semigroups, (Proc. Edinburgh Math. Soc., 22 (1979)), 113-125 · Zbl 0414.20048
[17] Fountain, J. B., Abundant semigroups, (Proc. London Math. Soc., 44 (1982)), 103-129 · Zbl 0481.20036
[18] P. J. Higgins, “Categories and Groupoids,” Mathematical Studies, Vol. 32, Van Nostrand-Reinhold, Princeton, NJ.; P. J. Higgins, “Categories and Groupoids,” Mathematical Studies, Vol. 32, Van Nostrand-Reinhold, Princeton, NJ. · Zbl 1087.20038
[19] Howie, J. M., An Introduction to Semigroup Theory (1976), Academic Press: Academic Press Orlando, FL · Zbl 0355.20056
[20] Kil’p, M., To the homological classification of monoids, Sibirsk. Mat. Zh., 13, 578-586 (1972) · Zbl 0246.20071
[21] Kil’p, M., Commutative monoids all of whose principal ideals are projective, (Semigroup Forum, 6 (1973)), 334-339 · Zbl 0267.20053
[22] Lawson, M. V., The Structure Theory of Abundant Semigroups, Ph.D. Thesis (1985), York
[23] Lawson, M. V., The geometric theory of inverse semigroups. I. \(E\)-unitary semigroups, J. Pure Appl. Algebra, 67, 151-177 (1990) · Zbl 0725.20046
[24] M. V. Lawson, The geometric theory of inverse semigroups. II. \(E\)-unitary covers, submitted for publication.; M. V. Lawson, The geometric theory of inverse semigroups. II. \(E\)-unitary covers, submitted for publication. · Zbl 0799.20057
[25] Lawson, M. V., Rees matrix semigroups, (Proc. Edinburgh Math. Soc., 33 (1990)), 23-37 · Zbl 0668.20049
[26] M. V. Lawson, Semilattices of Rees matrix semigroups, in preparation.; M. V. Lawson, Semilattices of Rees matrix semigroups, in preparation.
[27] Mitchell, B., Theory of Categories (1965), Academic Press: Academic Press Orlando, FL · Zbl 0136.00604
[28] Nambooripad, K. S.S, Structure of regular semigroups, I, Mem. Amer. Math. Soc., 224 (1979) · Zbl 0457.20051
[29] Rinow, W., Über die Vervollständigung induktiver Gruppoide, Math. Nachr., 25, 199-222 (1963) · Zbl 0122.01904
[30] Rinow, W., Vervollständigung geordneter Kategorien, Math. Nachr., 33, 129-175 (1966) · Zbl 0153.34004
[31] Schein, B. M., Relation algebras and function semigroups, (Semigroup Forum, 1 (1970)), 1-62 · Zbl 0197.29404
[32] Schein, B. M., On the theory of inverse semigroups and generalised groups, Amer. Math. Soc. Transl., 133, 89-122 (1979) · Zbl 0404.20055
[33] Schweizer, B.; Sklar, A., The algebra of functions, Math. Ann., 139, 366-382 (1960) · Zbl 0095.10101
[34] Schweizer, B.; Sklar, A., The algebra of functions, II, Math. Ann., 143, 440-447 (1961) · Zbl 0099.31901
[35] Schweizer, B.; Sklar, A., The algebra of functions, III, Math. Ann., 161, 171-196 (1965) · Zbl 0134.12602
[36] Schweizer, B.; Sklar, A., Function systems, Math. Ann., 172, 1-16 (1967) · Zbl 0163.01403
[37] Tilson, B., Categories as algebra: An essential ingredient in the theory of monoids, J. Pure Appl. Algebra, 48, 83-198 (1987) · Zbl 0627.20031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.