Dragomir, Sever Silvestru A mapping in connection to Hadamard’s inequalities. (English) Zbl 0747.26015 Anz. Österr. Akad. Wiss., Math.-Naturwiss. Kl. 1991, No. 2, 17-20 (1991). The following generalization of the well-known Hadamard inequalities for convex functions is given: Let \(f:[a,b]\to R\) be a convex function on the interval \([a,b]\) from \(R\). Let the function \(H:[0,1]\to R\) be defined by \[ H(t):={1\over b-a}\int^ b_ af\left(tx+(1-t){a+b\over 2}\right)dx. \] Then (i) \(H\) is convex on \([0,1]\), (ii) we have \(\inf_{t\in[0,1]}H(t)=H(0)=f\left({a+b\over 2}\right)\), \(\sup_{t\in [0,1]}H(t)=H(1)={1\over b-a}\int^ b_ af(x)dx\), (iii) \(H\) is monotonously increasing on \([0,1]\). Reviewer: J.E.Pečarić (Zagreb) Cited in 1 ReviewCited in 12 Documents MSC: 26D15 Inequalities for sums, series and integrals 26A51 Convexity of real functions in one variable, generalizations Keywords:logarithmic mean; Hadamard inequalities; convex functions PDF BibTeX XML Cite \textit{S. S. Dragomir}, Anz. Österr. Akad. Wiss., Math.-Naturwiss. Kl. 1991, No. 2, 17--20 (1991; Zbl 0747.26015) OpenURL