×

zbMATH — the first resource for mathematics

Dynamic output feedback linearization and global stabilization. (English) Zbl 0747.93069
Summary: We present a class of single-input single-output nonlinear systems which are globally transformable by a dynamic output feedback control and a time-varying state space transformation into a linear, observable and minimum phase system. We then show how those systems can be globally stabilized by a dynamic output feedback nonlinear control and how global output tracking can be achieved as well.

MSC:
93D15 Stabilization of systems by feedback
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Byrnes, C.I.; Isidori, A., New results and examples in nonlinear feedback stabilization, Systems control lett., 12, 437-442, (1989) · Zbl 0684.93059
[2] C.I. Byrnes and A. Isidori, Asymptotic stabilization of minimum phase nonlinear systems, IEEE Trans. Automat. Control, submitted. · Zbl 0758.93060
[3] Charlet, B.; Levine, J.; Marino, R., On dynamic feedback linearization, Systems control lett., 13, 143-151, (1989) · Zbl 0684.93043
[4] Charlet, B.; Levine, J.; Marino, R., Sufficient conditions for dynamic state feedback linearization, SIAM J. control optim., 29, 1, 38-57, (1991) · Zbl 0739.93021
[5] Fliess, M., Generalization non lineaire de la forme canonique de commande et linearization par bouclage, C.R. acad. sci. Paris I, 308, 377-379, (1989) · Zbl 0664.93038
[6] Fliess, M., Generalized controller canonical form for linear and nonlinear dynamics, IEEE trans. automat. control., 35, 9, 994-1001, (1990) · Zbl 0724.93010
[7] Isidori, A., Nonlinear control systems, (1989), Springer-Verlag Berlin · Zbl 0714.93021
[8] Krener, A.J.; Isidori, A., Linearization by output injection and nonlinear observers, Systems control lett., 3, 47-52, (1983) · Zbl 0524.93030
[9] Marino, R., Adaptive observers for single output nonlinear systems, IEEE trans. automat. control., 35, 9, 1054-1058, (1990) · Zbl 0729.93016
[10] Nijmeijer, H.; van der Schaft, A., Nonlinear dynamical control systems, (1990), Springer-Verlag Berlin · Zbl 0701.93001
[11] Respondek, W., Linearization, feedback and Lie brackets, (), 131-166
[12] Respondek, W., Global aspects of linearization, equivalence to polynomial forms and decomposition of nonlinear control systems, () · Zbl 0605.93033
[13] Vidyasagar, M., Decomposition techniques for large-scale systems with nonadditive interactions: stability and stabilizability, IEEE trans. automat. control., 25, 4, 773-779, (1980) · Zbl 0478.93044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.