Thermal disturbance of thin films pair: cross-plane thermal energy transfer. (English) Zbl 07472822

Summary: Thermal energy transfer across a silicon-aluminum thin films pair is considered. The thin films pair is thermally disturbed from the silicon film edge by a repetitive temperature pulses while phonon transport in the film pairs is examined. The transient frequency dependent Boltzmann transport equation is solved numerically incorporating the appropriate initial and boundary conditions. Thermal boundary resistance is adopted at the thin films interface and electron-phonon coupling is introduced to account for the thermal communication of electron and lattice subsystems in the aluminum film. The influence of repetition of temperature disturbance on the phonon transport characteristics is assessed. The numerical code developed is validated through the thermal conductivity data reported in the previous study. It is found that thermal conductivity predictions agree well with the experimental data. The long pulse temperature disturbance from the silicon edge results in large phonon intensity oscillations in the silicon and the aluminum films. The ballistic phonons contribute significantly to damping of phonon intensity oscillations in the silicon film. The magnitude of temperature jump at the film edges and the films pair interface remains low for the frequency dependent solution of the Boltzmann equation.


82-XX Statistical mechanics, structure of matter


Full Text: DOI


[1] Ali, H.; Yilbas, B. S., Transient effects of temperature disturbance on phonon characteristics in thin diamond film, J. Comput. Theor. Transport, 44, 3, 119-140 (2015)
[2] Arhcroft, N. W.; Mermin., N. D., Solid state physics (1976), Philadelphia, PA: Harcourt College Publishers, Philadelphia, PA
[3] Asheghi, M.; Leung, Y. K.; Wong, S. S.; Goodson., K. E., Phonon-boundary scattering in thin silicon layers, Appl. Phys. Lett, 71, 13, 1798-1800 (1997)
[4] Belhadi, M.; Khater., A., Ballistic phonon thermal transport across topologically structured nanojunctions on gold wires, Physica E, 88, 97-103 (2017)
[5] Bouley, A. C.; Mohan, N. S.; Damon., D. H., The lattice thermal conductivity of copper and aluminum alloys at low temperatures, Therm Conduct, 14, 81-88 (1976)
[6] Brockhouse, B. N., Lattice vibrations in silicon and germanium, Phys. Rev. Lett, 2, 6, 256-258 (1959)
[7] Chen, G., Nanoscale energy transport and conversion (2005), London: Oxford University Press, London
[8] Chen, Xiang; Chernatynskiy, Aleksandr; Xiong, Liming; Chen., Youping, A coherent phonon pulse model for transient phonon thermal transport, Comput. Phys. Commun, 195, 112-116 (2015)
[9] Chen, Xiang; Li, Weixuan; Xiong, Liming; Li, Yang; Yang, Shengfeng; Zheng, Zexi; McDowell, David L.; Chen., Youping, Ballistic-diffusive phonon heat transport across grain boundaries, Acta Mater, 136, 355-365 (2017)
[10] Choi, Soon-Ho; Maruyama., Shigeo, Thermal boundary resistance at an epitaxially perfect interface of thin films, Int. J. Therm. Sci, 44, 6, 547-558 (2005)
[11] Ding, Yajiang; Zhu, Chen; Liu, Jianpeng; Duan, Yongqing; Yi, Zhengran; Xiao, Jian; Wang, Shuai; Huang, YongAn; Yin., Zhouping, Flexible small-channel thin-film transistors by electrohydrodynamic lithography, Nanoscale, 9, 48, 19050-19057 (2017)
[12] Fuchs, F.; Poupaud., F., Equilibrium states for interactions with acoustic phonons, Transport Theor. Stat. Phys, 28, 6, 629-641 (1999) · Zbl 0962.82031
[13] Galler, M.; Schurrer., F., A multigroup approach to the coupled electron‐phonon boltzmann equations in InP, Transport Theor. Stat. Phys, 33, 5-7, 485-501 (2004) · Zbl 1088.82030
[14] Guo, Yangyu; Wang., Moran, Lattice boltzmann modeling of phonon transport, J. Comput. Phys, 315, 1-15 (2016) · Zbl 1349.76686
[15] Henry, A. S.; Chen, G., Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics, J. Comput. Theor. Nanosci, 5, 141-152 (2008)
[16] Hua, Yu-Chao; Cao, Bing-Yang, Ballistic-diffusive heat conduction in multiply-constrained nanostructures, Int. J. Thermal Sci, 101, 126-132 (2016)
[17] Hua, Yu-Chao; Cao., Bing-Yang, Cross-plane heat conduction in nanoporous silicon thin films by phonon boltzmann transport equation and Monte Carlo simulations, Appl. Therm. Eng, 111, 1401-1408 (2017)
[18] Hua, Yu-Chao; Cao, Bing-Yang, Slip boundary conditions in ballistic-diffusive heat transport in nanostructures, Nanosc. Microsc. Thermophys. Eng, 21, 3, 159-176 (2017)
[19] Luo, Xiao-Ping; Yi., Hong-Liang, A discrete unified gas kinetic scheme for phonon boltzmann transport equation accounting for phonon dispersion and polarization, Int. J. Heat Mass Transfer, 114, 970-980 (2017)
[20] Majumdar, A., Microscale heat conduction in dielectric thin films, J. Heat Transfer, 115, 1, 7-16 (1993)
[21] Mansoor, S. B.; Yilbas., B. S., Phonon transport in silicon-silicon and silicon-diamond thin films: Consideration of thermal boundary resistance at interface, Physica B, 406, 11, 2186-2195 (2011)
[22] Mansoor, S. B.; Yilbas, B. S., Phonon transport in silicon thin film: Effect of temperature oscillation on effective thermal conductivity, Transport Theor. Stat. Phys, 42, 4-5, 179-201 (2013) · Zbl 1302.82099
[23] Mansoor, S. B.; Yilbas, B. S., Phonon transport characteristics in a thin silicon film, J. Comput. Theor. Transport, 44, 3, 154-174 (2015)
[24] Mansoor, S. B.; Yilbas., B. S., Phonon transport across nano-scale curved thin films, Physica B, 503, 130-140 (2016)
[25] Moll, J. L., and Duh., C.-Y.1964. Studies of microplasmas and high-field effects in silicon. Final Report, Solid-State Electronics Laboratory Stanford Electronics Laboratories Stanford University Stanford, California.
[26] Nabovati, Aydin; Sellan, Daniel P.; Amon., Cristina H., On the lattice boltzmann method for phonon transport, J. Comput. Phys, 230, 15, 5864-5876 (2011) · Zbl 1221.82089
[27] Ramazani, A.; Reihani, A.; Soleimani, A.; Larson, R.; Sundararaghavan., V., Molecular dynamics study of phonon transport in graphyne nanotubes, Carbon, 123, 635-644 (2017)
[28] Stedman, R.; Nilsson., G., Dispersion relations for phonons in aluminum at 80 and 300 K, Phys. Rev, 145, 2, 492-500 (1966)
[29] Swartz, E. T.; Pohl., R. O., Thermal boundary resistance, Rev. Mod. Phys, 61, 3, 605-668 (1989)
[30] Ward, A.; Broido., D. A., Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge, Phys. Rev. B, 81, 085205 (2010)
[31] Ward, A.; Broido, D. A.; Stewart, D. A.; Deinzer., G., Ab initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B, 80, 12, 125203 (2009)
[32] Wilson, R. B.; Cahill., D. G., Anisotropic failure of fourier theory in time-domain thermoreflectance experiments, Nat. Commun, 5, 5075 (2014)
[33] Yilbas, B. S., Improved formulation of electron kinetic theory approach for laser ultra-short-pulse heating, Int. J. Heat Mass Transfer, 49, 13, 2227-2238 (2006) · Zbl 1189.82122
[34] Yilbas, B. S.; Ali., H., Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics, Physica B, 495, 21-34 (2016)
[35] Yilbas, B. S.; Mansoor., S. B., Logistic characteristics of phonon transport in silicon thin film: The s-curve, Physica B, 426, 79-84 (2013)
[36] Yilbas, B. S.; Mansoor, S. B., Lattice phonon and electron temperatures in silicon-aluminum thin films pair: Comparison of boltzmann equation and modified two-equation model, Transport Theor Stat Phys, 42, 1, 21-39 (2013) · Zbl 1303.82033
[37] Ziman, J. M., Electrons and phonons: The theory of transport phenomena in solids (1960), London: Oxford University Press, London · Zbl 0088.24004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.