×

On \(\ell\)-adic sheaves on Shimura varieties and their higher direct images in the Baily-Borel compactification. (English) Zbl 0748.14008

Let \(S\) be the canonical model of a Shimura variety associated to a reductive group \(G\). Let \(j: S\hookrightarrow S^*\) denote the open embedding into the canonical model of the Baily-Borel compactification. Let \(i:S_ 1\hookrightarrow S^*\) be the locally closed embedding of a boundary stratum; here \(S_1\) is the canonical model of a Shimura variety associated to another, explicitly given, reductive group \(G_1\). (This has been described in the author’s dissertation [“Arithmetical compactification of mixed Shimura varieties”, Bonn. Math. Schr. 209 (1989; see the preceding review Zbl 0748.14007)].
An algebraic representation of \(G\) on a \(\mathbb{Q}_\ell\)-vector space \(V\) determines a smooth \(\ell\)-adic sheaf \({\mathcal V}\) on \(S\). The main result of the present article is a description of the \(\ell\)-adic sheaves \(i^*R^nj_*{\mathcal V}\) on \(S_1\). A simple group cohomological formula yields an algebraic representation of \(G_1\) and hence an \(\ell \)-adic sheaf on \(S_1\): this is canonically isomorphic to \(i^*R^nj_*{\mathcal V}\). The analogous statement in the analytic category is well-known and much easier to prove.

MSC:

14G35 Modular and Shimura varieties
11G18 Arithmetic aspects of modular and Shimura varieties
14F30 \(p\)-adic cohomology, crystalline cohomology
11F75 Cohomology of arithmetic groups

Citations:

Zbl 0748.14007
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Artin, M., Mazur, B.: ?tale homotopy. (Lect. Notes Math., vol. 100) Berlin Heidelberg New York: Springer 1969 · Zbl 0182.26001
[2] Ash, A., Mumford, D., Rapoport, M., Tai, Y.: Smooth compactification of locally symmetric varieties. Lie groups: history, frontiers and applications. Brookline, Mass.: Math. Sci. Press 1975 · Zbl 0334.14007
[3] Baily, W. L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math.84, 442-528 (1966) · Zbl 0154.08602 · doi:10.2307/1970457
[4] Borel, A.: Introduction aux groupes arithm?tiques. Paris: Hermann 1969 · Zbl 0186.33202
[5] Borel, A., Serre, J.-P.: Corners and arithmetic groups. Comment Math. Helv.48, 436-491 (1974) · Zbl 0274.22011 · doi:10.1007/BF02566134
[6] Brown, K. S.: Cohomology of groups. (Grad. Texts Math., vol. 87) Berlin Heidelberg New York: Springer 1982 · Zbl 0584.20036
[7] Deligne, P.: Variet?s de Shimura: interpr?tation modulaire, et techniques de construction de mod?les canoniques. In: Borel A., Casselmann, W. (eds.) Automorphic forms, representations andL-functions. Corvallis 1977. (Proc. Symp. Pure Math., vol. 33, part 2, pp. 247-290) Providence, RI: Am. Math. Soc. 1979
[8] Deligne, P.: La conjecture de Weil. II. Publ. Math., Inst. Hautes ?tud. Sci.52, 137-251 (1981) · Zbl 0456.14014 · doi:10.1007/BF02684780
[9] Deligne, P., Milne, J.S., Ogus, A., Shih, K.: Hodge cycles, motives, and Shimura varieties. (Lect. Notes Math., vol. 900) Berlin Heidelberg New York: Springer 1982 · Zbl 0465.00010
[10] Godement, R.: Th?orie des faisceaux, Paris: Hermann 1973 · Zbl 0275.55010
[11] Grothendieck, A., Dieudonn?, J. A.: El?ments de g?om?trie alg?brique. I. Publ. Math., Inst. Hautes ?tud. Sci.4 (1960)
[12] Harder, G.: Eisensteinkohomologie arithmetischer Gruppen, allgemeine Aspekte. Preprint Bonn, 70 pp. (1986)
[13] Harder, G.: Arithmetische Eigenschaften von Eisensteinklassen, die modulare Konstruktion von gemischten Motiven und von Erweiterungen endlicher Galoismoduln. Preprint Bonn, 103 pp. (1989)
[14] Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal embeddings. I. (Lect. Notes Math., vol. 339) Berlin Heidelberg New York: Springer 1973 · Zbl 0271.14017
[15] Langlands, R. P.: Some contemporary problems with origin in the Jugendtraum. In: Browder, F. E. (ed.) Mathematical developments arising from Hilbert problems. (Proc. Symp. Pure Math., vol. 28, part 2, pp. 401-48) Providence, RI: Am. Math. Soc. 1976
[16] Looijenga, E., Rapoport, M.: Weights in the local cohomology of a Baily-Borel compactification. Preprint, 37 pp. (January 1990) · Zbl 0753.14016
[17] Milne, J. S.: The action of an automorphism ofC on a Shimura variety and its special points. In: Artin, M., Tate, J. (eds.) Arithmetic and geometry, Pap. dedic. I. R. Shafarevich, vol. I. (Prog. Math., vol. 35, pp. 239-265) Boston Basel Stuttgart: Birkh?user
[18] Milne, J. S.: Canonical models of (mixed) Shimura varieties and automorphic vector bundles. In: Clozel, L., Milne, J. S. (eds.) Automorphic forms, Shimura vatrieties, andL-functions, pp. 283-414. Academic Press (1990)
[19] Mumford, D., Fogarty, J.: Geometric invariant theory. Berlin Heidelberg New York: Springer 1982 · Zbl 0504.14008
[20] Pink, R.: Arithmetical compactification of mixed Shimura varieties. Dissertation. Bonn (1989) · Zbl 0748.14007
[21] Rapoport, M.: On the shape of the contribution of a fixed point on the boundary. The case ofQ-rank one. Preprint, 8 pp. (1991)
[22] Artin, M., Grothendieck, A., Verdier, J. L., et al.: S?minaire de g?om?trie alg?brique 4. Th?orie des topos et cohomologie ?tale des sch?mas. (Lect. Notes Math., vols. 269, 270, 305) Berlin Heidelberg New York: Springer 1972-73
[23] Deligne, P. et al.: S?minaire de g?om?trie alg?brique 41/2. Cohomologie ?tale. (Lect. Notes Math., vol. 569) Berlin Heidelberg New York: Springer 1977
[24] Vogan, D. A.: Representations of real reductive Lie groups. (Prog. Math., vol. 15) Boston Basel Stuttgart: Birkh?user 1981 · Zbl 0469.22012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.