zbMATH — the first resource for mathematics

Rapidly decreasing potentials on a background of finite-zone potentials and the \(\bar\partial\)-problem on Riemann surfaces. (English. Russian original) Zbl 0748.35025
Funct. Anal. Appl. 23, No. 4, 321-322 (1989); translation from Funkts. Anal. Prilozh. 23, No. 4, 79-80 (1989).
The scattering theory for the operators \(L_ p=\partial_ y-\partial^ 2_ x+u(x,y)\), \(L_ s=-\partial^ 2_ x-\partial^ 2_ y+u(x,y)\) is studied. The energy \({\mathcal E}_ 0\) is fixed and the potential \(u(x,y)\) has the form \(u(x,y)=u_ 0(x,y)+u_ 1(x,y)\), where \(u_ 0(x,y)\) is a finite-zone potential, \(u_ 1 (x,y)\) is a quickly decreasing potential.

35P25 Scattering theory for PDEs
35N15 \(\overline\partial\)-Neumann problems and formal complexes in context of PDEs
Full Text: DOI
[1] E. A. Kuznetsov and A. V. Mikhailov, Zh. Eksp. Teor. Fiz.,67, No. 5, 1717-1727 (1974).
[2] I. M. Krichever, Funkts. Anal. Prilozhen.,9, No. 2, 77-78 (1975).
[3] R. F. Bikbaev and R. A. Sharipov, Teor. Mat. Fiz.,78, No. 3, 335-356 (1989).
[4] P. G. Grinevich and S. P. Novikov, Funkts, Anal. Prilozhen.,22, No. 1, 23-33 (1988).
[5] I. M. Krichever, Usp. Mat. Nauk,44, No. 2, 121-184 (1989).
[6] I. M. Krichever, Funkts. Anal. Prilozhen.,20, No. 3, 42-54 (1986).
[7] W. Koppelman, J. Math. Mech.,10, No. 2, 247-277 (1961).
[8] Yu. L. Rodin, Physica D,24, No. 1-3, 1-53 (1987). · Zbl 0605.30043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.