Molchanov, I. S. Estimation of the parameters of superpositions of Poisson point processes. (English. Russian original) Zbl 0748.62047 Theory Probab. Math. Stat. 43, 123-130 (1991); translation from Teor. Veroyatn. Mat. Stat., Kiev 43, 111-117 (1990). Summary: Estimators are obtained for the intensity of a stationary Poisson process \(\prod_ \lambda\) and for the set \(\tilde M=\{a_ i-a_ j: 1\leq i,\;j\leq m\}\) from observations of the superposition of the Poisson processes \(\prod_ \lambda+a_ i\), \(i=1,2,\dots,m\). Here \(\{a_ 1,\dots,a_ m\}\) is a nonrandom point set in \(R^ d\). It is proved that these estimators are strictly consistent, in the Hausdorff metric. MSC: 62M09 Non-Markovian processes: estimation 62F12 Asymptotic properties of parametric estimators 62M05 Markov processes: estimation; hidden Markov models 60D05 Geometric probability and stochastic geometry 60G10 Stationary stochastic processes Keywords:strict consistency; superpositions of Poisson processes; Boolean models; intensity; stationary Poisson process; Hausdorff metric PDFBibTeX XMLCite \textit{I. S. Molchanov}, Theory Probab. Math. Stat. 43, 123--130 (1990; Zbl 0748.62047); translation from Teor. Veroyatn. Mat. Stat., Kiev 43, 111--117 (1990)