×

zbMATH — the first resource for mathematics

Non-integrability of the equations of heavy gyrostat. (English) Zbl 0748.70003
Summary: We prove that the equations of heavy gyrostat possess an additional algebraic first integral only in the cases of Zhukovsky, Lagrange, and Yehia.

MSC:
70E05 Motion of the gyroscope
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] Ablowitz, M.J. , Ramani, A. and Segur, H. : J. Math. Phys. 21 (1980), 715. · Zbl 0445.35056 · doi:10.1063/1.524491
[2] Alder, M. and Van Moerbeke, P. : Algebraic Completely Integrable Systems: A Systematic Approach , Academic Press, to appear.
[3] Bruns, H. : Acta Math. 11 (1887), 25-96. · JFM 19.0935.01
[4] Gavrilov, L. : Non-integrability of a class of differential equations which are not of Painlevé type , Compt. Rend. Acad. Bulg. Sci. 41 (1988), 21-24. · Zbl 0649.34013
[5] Gavrilov, L. : On the integrable cases of the equations of heavy gyrostat , Annuaire de l’Universite de Sofia Mécanique 80 (1986) in Russian.
[6] Gavrilov, L. : Remarks on the equations of heavy gyrostat , Compt. Rend. Acad. Bulg. Sci. 42 (1989), 17-20. · Zbl 0668.70007
[7] Golubev, V.V. : Lectures on the integration of equations of motion of a rigid body about a fixed point ,Haifa: Israel, 1960. · Zbl 0122.18701
[8] Gorr, G.V. : Kudryashova, L.V. and Stepanova, L.A. : Classical problems in rigid body dynamics ,Naukova Dumka: Kiev, 1978 in Russian.
[9] Griffiths, P. and Harris, J. : Principles of Algebraic Geometry , Wiley-Interscience, New York (1978). · Zbl 0408.14001
[10] Horn, J. : J. Reine und Angew. Math 116 (1896), 265-306 and J. Reine und Angew. Math. 117 (1897), 104-128, 254-266. · JFM 27.0260.01
[11] Husson, Ed. : Recherche des intégrales algébriques dans le mouvement d’un solide pesant autour d’un point fixe , Ann. Fac. Sci. Univ. Toulouse Serie 2 8 (1906), 73-152 and Acta Math. 31 (1907), 71. · JFM 37.0746.01 · www.numdam.org
[12] Keis, I.A. : PMM USSR 28 (1964), 633-639. · Zbl 0136.21902 · doi:10.1016/0021-8928(64)90106-6
[13] Kozlov, V.V. : Methods for Qualitative Analysis in Rigid Body Dynamics , Moscow University Press, Moscow (1980). · Zbl 0557.70009
[14] Lesfari, A. : Abelian surfaces and Kowalewski’s top , Ann. Scient. Ec. Norm. Sup. 4e série 21 (1988), 193-223. · Zbl 0667.58019 · doi:10.24033/asens.1556 · numdam:ASENS_1988_4_21_2_193_0 · eudml:82225
[15] Yehia, H.M. : J. Mecan. Theor. Appl. 5 (1986), 747-754. · Zbl 0619.70005
[16] Yehia, H.M. : Mech. Res. Commun. 13 (1986), 169-172. · Zbl 0606.70008 · doi:10.1016/0093-6413(86)90059-5
[17] Yoshida, H. : Celest. Mech. 31 (1983), 363-379 and 31 (1983), 381-399. · Zbl 0556.70014 · doi:10.1007/BF01230292
[18] Ziglin, S.L. : Funct. Anal. Appl. 16 (1983), 181-189 and 17 (1983), 6-17. · Zbl 0518.58016 · doi:10.1007/BF01083174
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.