Penalization in non-classical convex programming via variational convergence. (English) Zbl 0748.90051

This is a penalty method for approximating constrained optimization problems by unconstrained ones, in the case that more general convex functions are considered which cannot necessarily be extended outside their effective domains by an everywhere finite convex function. The concepts of the perturbed proximal regularization method and variational convergence are described, and applied to the problem, in conjunction with a new penalty method. Extensive computational results are given.


90C25 Convex programming
49J45 Methods involving semicontinuity and convergence; relaxation
49M30 Other numerical methods in calculus of variations (MSC2010)
90-08 Computational methods for problems pertaining to operations research and mathematical programming
Full Text: DOI


[1] P. Alart, ”Contribution à la résolution numérique des inclusions différentielles,” Thèse de 3ème cycle, Université des Sciences et Techniques du Languedoc (Montpellier, 1985).
[2] H. Attouch,Variational Convergence for Functions and Operators (Pitman Advance Publishing Program, Boston, MA, 1984). · Zbl 0561.49012
[3] H. Attouch and R.J.B. Wets, ”Isometries for the Legendre–Fenchel transform,”Transactions of the American Mathematical Society 296 (1984) 33–60. · Zbl 0607.49009
[4] A. Auslender, ”Numerical methods for non differentiable convex optimization,”Mathematical Programming Studies 30 (1985). · Zbl 0584.65035
[5] A. Auslender, J.P. Crouzeix and P. Fedit, ”Penalty proximal methods in Convex Programming,”Journal of Optimization Theory and Applications (to appear). · Zbl 0622.90065
[6] N. Bourbaki,Espaces Vectoriels Topologiques (Hermann, Paris) p. 129. · Zbl 0042.35302
[7] P.J. Laurent,Approximation et Optimisation (Hermann, Paris, 1972). · Zbl 0238.90058
[8] B. Lemaire, ”Approximations successives pour certains problèmes périodiques,” Séminaire d’Analyse Convexe, exposé no. 21 (Montpellier, 1977).
[9] B. Lemaire, ”Coupling optimization methods and variational convergence,” in:Trends in Mathematical Optimization, International Series of Numerical Mathematics (Birkhäuser, Basel, 1988) pp. 163–179.
[10] B. Martinet, ”Algorithmes pour la résolution de problèmes d’optimisation et de minimax,” Thèse d’Etat, Université de Grenoble (Grenoble, 1972).
[11] B. Martinet, ”Perturbation des méthodes d’optimisation,”Revue d’Automatique Informatique et Recherche Opérationnelle, Analyse Numérique 12(2) (1978) 153–171.
[12] J.J. Moreau, ”Proximité et dualité dans un espace hilbertien,”Bulletin de la Société Mathématique de France 93 (1965) 273–299.
[13] K. Mouallif, ”Sur la convergence d’une méthode associant pénalisation et régularisation,”Bulletin de la Société Royale des Sciences de Liège, 56è année 2 (1987) 175–180.
[14] K. Mouallif and P. Tossings, ”Une méthode de pénalisation exponentielle associée à une régularisation proximale,”Bulletin de la Société Royale des Sciences de Liège, 56è année 2 (1987) 181–190. · Zbl 0623.90062
[15] R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970). · Zbl 0193.18401
[16] R.T. Rockafellar, ”Monotone operators and the proximal point algorithm,”SIAM Journal on Control and Optimization 14 (1976) 877–808. · Zbl 0358.90053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.