Persistence curves: a canonical framework for summarizing persistence diagrams. (English) Zbl 07483089

Summary: Persistence diagrams are one of the main tools in the field of Topological Data Analysis (TDA). They contain fruitful information about the shape of data. The use of machine learning algorithms on the space of persistence diagrams proves to be challenging as the space lacks an inner product. For that reason, transforming these diagrams in a way that is compatible with machine learning is an important topic currently researched in TDA. In this paper, our main contribution consists of three components. First, we develop a general and unifying framework of vectorizing diagrams that we call the Persistence Curves (PCs), and show that several well-known summaries, such as Persistence Landscapes, fall under the PC framework. Second, we propose several new summaries based on PC framework and provide a theoretical foundation for their stability analysis. Finally, we apply proposed PCs to two applications – texture classification and determining the parameters of a discrete dynamical system; their performances are competitive with other TDA methods.


55N31 Persistent homology and applications, topological data analysis
55-04 Software, source code, etc. for problems pertaining to algebraic topology
68T10 Pattern recognition, speech recognition
Full Text: DOI arXiv


[1] PersistenceImages. https://gitlab.com/csu-tda/PersistenceImages (2019)
[2] Adams, H.; Emerson, T.; Kirby, M.; Neville, R.; Peterson, C.; Shipman, P.; Chepushtanova, S.; Hanson, E.; Motta, F.; Ziegelmeier, L., Persistence images: A stable vector representation of persistent homology, J. Mach. Learn. Res., 18, 218-252 (2017) · Zbl 1431.68105
[3] Atienza, N.; Gonzalez-Diaz, R.; Soriano-Trigueros, M., A new entropy based summary function for topological data analysis, Electron. Notes Discret. Math., 68, 113-118 (2018) · Zbl 1397.05208
[4] Atienza, N., González-Díaz, R., Soriano-Trigueros, M.: On the stability of persistent entropy and new summary functions for TDA. arXiv:1803.08304, (2018) · Zbl 1397.05208
[5] Bell, G., Lawson, A., Pritchard, C.N., Yasaki, D.: The space of persistence diagrams fails to have yu’s property a (2019) · Zbl 1483.54020
[6] Bendich, P.; Marron, JS; Miller, E.; Pieloch, A.; Skwerer, S., Persistent homology analysis of brain artery trees, Ann. Appl. Stat., 10, 198 (2016)
[7] Berry, E.; Chen, Y-C; Cisewski-Kehe, J.; Fasy, BT, Functional summaries of persistence diagrams, J. Appl. Computat. Topol., 4, 211-262 (2020) · Zbl 1452.62999
[8] Bubenik, P., Statistical topological data analysis using persistence landscapes, J. Mach. Learn. Res., 16, 77-102 (2015) · Zbl 1337.68221
[9] The persistence landscape and some of its properties. Abel Symposia, 97-117 (2020) · Zbl 1453.62807
[10] Bubenik, P.; Vergili, T., Topological spaces of persistence modules and their properties, J. Appl. Computat. Topol., 2, 233-269 (2018) · Zbl 1423.55012
[11] Bubenik, P., Wagner, A.: Embeddings of persistence diagrams into hilbert spaces (2019) · Zbl 1455.55006
[12] Carrière, M., Bauer, U.: On the metric distortion of embedding persistence diagrams into separable hilbert spaces. In: Symposium on Computational Geometry (2019)
[13] Carrière, M., Cuturi, M., Oudot, S.: Sliced Wasserstein kernel for persistence diagrams. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, vol. 70 of Proceedings of Machine Learning Research, International Convention Centre, Sydney, Australia, Aug 06-11, PMLR, pp 664-673 (2017)
[14] Carrière, M., Chazal, F., Ike, Y., Lacombe, T., Royer, M., Umeda, Y.: Perslay: A neural network layer for persistence diagrams and new graph topological signatures (2019)
[15] Carstens, C.J., Horadam, K.J.: Persistent homology of collaboration networks. Math. Probl. Eng. 2013 (2013) · Zbl 1299.91104
[16] Chazal, F., Fasy, B., Lecci, F., Michel, B., Rinaldo, A., Wasserman, L.: Subsampling methods for persistent homology. In: International Conference on Machine Learning, pp 2143-2151 (2015)
[17] Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L.: Stochastic convergence of persistence landscapes and silhouettes. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, p 474. ACM (2014) · Zbl 1395.62187
[18] Chen, Y.-C., Wang, D., Rinaldo, A., Wasserman, L.: Statistical analysis of persistence intensity functions. arXiv:1510.02502 (2015)
[19] Chevyrev, I.; Nanda, V.; Oberhauser, H., Persistence paths and signature features in topological data analysis, IEEE Trans. Pattern Anal. Mach. Intell., 42, 192-202 (2020)
[20] Chung, Y.-M., Day, S.: Topological fidelity and image thresholding: A persistent homology approach. J. Math. Imaging Vis. pp. 1-13 (2018) · Zbl 1433.68510
[21] Chung, Y.-M., Hu, C.-S., Lawson, A., Smyth, C.: Topological approaches to skin disease image analysis. In: 2018 IEEE International Conference on Big Data (Big Data), pp 100-105. IEEE (2018)
[22] Cohen-Steiner, D.; Edelsbrunner, H.; Harer, J., Stability of persistence diagrams, Discret. Comput. Geom., 37, 103-120 (2007) · Zbl 1117.54027
[23] Cohen-Steiner, D.; Edelsbrunner, H.; Harer, J.; Mileyko, Y., Lipschitz functions have l p-stable persistence, Found. Comput. Math., 10, 127-139 (2010) · Zbl 1192.55007
[24] De Silva, V.; Ghrist, R., Coverage in sensor networks via persistent homology, Algebraic Geom. Topol., 7, 339-358 (2007) · Zbl 1134.55003
[25] Divol, V., Lacombe, T.: Understanding the topology and the geometry of the space of persistence diagrams via optimal partial transport. J. Appl. Computat. Topol. pp. 1-53 (2020) · Zbl 1473.62408
[26] Dlotko, P.: Persistence representations. In: GUDHI User and Reference Manual, GUDHI Editorial Board 3.1.1 (2020)
[27] Donato, I.; Gori, M.; Pettini, M.; Petri, G.; De Nigris, S.; Franzosi, R.; Vaccarino, F., Persistent homology analysis of phase transitions, Phys. Rev. E., 93, 052138 (2016)
[28] Edelsbrunner, H., Harer, J.: Computational topology: An introduction, miscellaneous books, American Mathematical Society (2010) · Zbl 1193.55001
[29] Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp 454-463. IEEE (2000) · Zbl 1011.68152
[30] Feichtinger, HG; Strohmer, T., Gabor Analysis And Algorithms: Theory and Applications (2012), New York: Springer Science & Business Media, New York · Zbl 0890.42004
[31] Ferri, M., Frosini, P., Lovato, A., Zambelli, C.: Point selection: A new comparison scheme for size functions (with an application to monogram recognition). In: Asian Conference on Computer Vision, pp 329-337. Springer (1998)
[32] Frosini, P.: Measuring shapes by size functions. In: Intelligent Robots and Computer Vision X: Algorithms and Techniques. International Society for Optics and Photonics, vol. 1607, pp 122-134 (1992)
[33] Guo, W.; Manohar, K.; Brunton, SL; Banerjee, AG, Sparse-tda: Sparse realization of topological data analysis for multi-way classification, IEEE Trans. Knowl. Data Eng., 30, 1403-1408 (2018)
[34] Hayman, E., Caputo, B., Fritz, M., Eklundh, J.-O.: On the significance of real-world conditions for material classification. In: European conference on computer vision, pp 253-266. Springer (2004) · Zbl 1098.68776
[35] Hein, J., Discrete Mathematics, Discrete Mathematics and Logic Series (2003), Boston: Jones and Bartlett Publishers, Boston
[36] Kaczynski, T.; Mischaikow, K.; Mrozek, M., Computational Homology, Applied Mathematical Sciences (2004), New York: Springer, New York · Zbl 1039.55001
[37] Kusano, G., Hiraoka, Y., Fukumizu, K: Persistence weighted gaussian kernel for topological data analysis. In: International Conference on Machine Learning, pp 2004-2013 (2016)
[38] Lawson, A.: PersistenceCurves (a python package for computing persistence curves). https://github.com/azlawson/PersistenceCurves (2018)
[39] Lawson, A.: On the Preservation of Coarse Properties over Products and on Persistence Curves, PhD thesis, The University of North Carolina at Greensboro (2019)
[40] Lazebnik, S.; Schmid, C.; Ponce, J., A sparse texture representation using local affine regions, IEEE Trans. Pattern Anal. Mach. Intell., 27, 1265-1278 (2005)
[41] Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1995-2002 (2014)
[42] Li, L.; Cheng, W-Y; Glicksberg, BS; Gottesman, O.; Tamler, R.; Chen, R.; Bottinger, EP; Dudley, JT, Identification of type 2 diabetes subgroups through topological analysis of patient similarity, Sci. Transl. Med., 7, 311ra174-311ra174 (2015)
[43] Liu, L.; Chen, J.; Fieguth, P.; Zhao, G.; Chellappa, R.; Pietikäinen, M., From bow to cnn: Two decades of texture representation for texture classification, Int. J. Comput. Vis., 127, 74-109 (2019)
[44] Mileyko, Y.; Mukherjee, S.; Harer, J., Probability measures on the space of persistence diagrams, Inverse Probl., 27, 124007 (2011) · Zbl 1247.68310
[45] Nakamura, T.; Hiraoka, Y.; Hirata, A.; Escolar, EG; Nishiura, Y., Persistent homology and many-body atomic structure for medium-range order in the glass, Nanotechnology, 26, 304001 (2015)
[46] Ojala, T., Maenpaa, T., Pietikainen, M., Viertola, J., Kyllonen, J., Huovinen, S.: Outex-new framework for empirical evaluation of texture analysis algorithms. In: Object recognition Supported by User Interaction for Service Robots, vol. 1, pp 701-706. IEEE (2002)
[47] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825-2830 (2011) · Zbl 1280.68189
[48] Perea, JA; Carlsson, G., A klein-bottle-based dictionary for texture representation, Int. J. Comput. Vis., 107, 75-97 (2014) · Zbl 1328.68279
[49] Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 4741-4748 (2015)
[50] Richardson, E.; Werman, M., Efficient classification using the Euler characteristic, Pattern Recogn. Lett., 49, 99-106 (2014)
[51] Rieck, B., Sadlo, F., Leitte, H.: Topological machine learning with persistence indicator functions. In: Topological Methods in Data Analysis and Visualization, pp 87-101. Springer (2017) · Zbl 1465.68230
[52] Rotman, J., An Introduction to Algebraic Topology, Graduate Texts in Mathematics (1998), New York: Springer, New York · Zbl 0661.55001
[53] Saadatfar, M.; Takeuchi, H.; Robins, V.; Francois, N.; Hiraoka, Y., Pore configuration landscape of granular crystallization, Nat. Commun., 8, 15082 (2017)
[54] Tauzin, G., Lupo, U., Tunstall, L., Pérez, J. B., Caorsi, M., Medina-Mardones, A., Dassatti, A., Hess, K.: giotto-tda: A topological data analysis toolkit for machine learning and data exploration (2020) · Zbl 07370556
[55] Tralie, C.; Saul, N.; Bar-On, R., Ripser.py: A lean persistent homology library for python, J. Open Source Softw., 3, 925 (2018)
[56] Turner, K.; Mukherjee, S.; Boyer, DM, Persistent homology transform for modeling shapes and surfaces, Inf. Infer. J. IMA, 3, 310-344 (2014) · Zbl 06840289
[57] Turner, K., Spreemann, G: Same but different: Distance correlations between topological summaries (2019) · Zbl 1450.62141
[58] Umeda, Y., Time series classification via topological data analysis, Inf. Media Technol, 12, 228-239 (2017)
[59] Zomorodian, A.; Carlsson, G., Computing persistent homology, Discret. Comput. Geom., 33, 249-274 (2005) · Zbl 1069.55003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.