×

Abstraction-based control synthesis using partial information. (English) Zbl 1483.93177

Summary: The problem studied in this paper is that of distributed controller design for interconnected systems using abstraction-based techniques. Controller synthesis for each subsystem uses local distributed sensor information from other subsystems. Such partial information in an abstraction will be characterized in terms of ranking functions which can be deemed as level sets of Lyapunov functions. An effective procedure is proposed for the computation of ranking functions in the case of reach and stay specifications. A step-by-step algorithmic procedure implementing the proposed approach is presented for controller synthesis based on partial information. A numerical example is provided to illustrate the implementation.

MSC:

93B50 Synthesis problems
93B51 Design techniques (robust design, computer-aided design, etc.)

Software:

CoSyma; SCOTS; PESSOA; TuLiP
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Apaza-Perez, W. A.; Combastel, C.; Zolghadri, A., Abstraction-based low complexity controller synthesis for interconnected non-deterministic systems, Proceedings of the 18th European Control Conference (ECC), 4174-4179 (2019)
[2] Belta, C.; Yordanov, B.; Gol, E., Formal Methods for Discrete-Time Dynamical Systems (2017), Springer · Zbl 1409.93003
[3] Borri, A.; Pola, G.; Benedetto, M. D.D., Symbolic models for nonlinear control systems affected by disturbances, Int. J. Control, 85, 10, 1422-1432 (2012) · Zbl 1253.93009
[4] Borri, A.; Pola, G.; Benedetto, M. D., A symbolic approach to the design of nonlinear networked control systems, Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control. Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control, HSCC ’12, 255-264 (2012), ACM · Zbl 1361.68018
[5] Handbook of Model Checking, (Clarke, E. M.; Henzinger, T.; Veith, H.; Bloem, R. (2018), Springer) · Zbl 1390.68001
[6] Dallal, E.; Tabuada, P., On compositional symbolic controller synthesis inspired by small-gain theorems, Proceedings of the 54th IEEE Conference on Decision and Control, 6133-6138 (2015)
[7] Girard, A.; Pappas, G. J., Approximation metrics for discrete and continuous systems, IEEE Trans. Autom. Control, 52, 5, 782-798 (2007) · Zbl 1366.93032
[8] Girard, A.; Pappas, G. J., Approximate bisimulation: a bridge between computer science and control theory, Eur. J. Control, 17, 5, 568-578 (2011) · Zbl 1253.68241
[9] Girard, A.; Pola, G.; Tabuada, P., Approximately bisimilar symbolic models for incrementally stable switched systems, IEEE Trans. Autom. Control, 55, 1, 116-126 (2010) · Zbl 1368.93413
[10] Girard, A.; Gssler, G.; Mouelhi, S., Safety controller synthesis for incrementally stable switched systems using multiscale symbolic models, IEEE Trans. Autom. Control, 61, 6, 1537-1549 (2016) · Zbl 1359.93350
[11] Kloetzer, M.; Belta, C., Dealing with nondeterminism in symbolic control, (Egerstedt, M.; Mishra, B., Hybrid Systems: Computation and Control (2008), Springer Berlin Heidelberg), 287-300 · Zbl 1143.68488
[12] Larsen, K.; Mikuionis, M.; Muiz, M.; Srba, J.; Taankvist, J., Online and compositional learning of controllers with application to floor heating, (Chechik, M.; Raskin, J., Tools and Algorithms for the Construction and Analysis of Systems, 9636 (2016), Springer), 244-259
[13] Majumdar, R.; Zamani, M., Approximately bisimilar symbolic models for digital control systems, (Madhusudan, P.; Seshia, S., Computer Aided Verification (LNCS), 7358 (2012), Springer Berlin Heidelberg)
[14] Mallik, K.; Schmuck, A.; Soudjani, S.; Majumdar, R., Compositional synthesis of finite state abstractions, IEEE Trans. Autom. Control, 1 (2018)
[15] Mazo, M.; Davitian, A.; Tabuada, P., Pessoa: a tool for embedded controller synthesis, (Touili, T.; Cook, B.; Jackson, P., Computer Aided Verification (2010), Springer Berlin Heidelberg), 566-569
[16] Megawati, N. Y.; van der Schaft, A., Bisimulation equivalence of differential-algebraic systems, Int. J. Control, 91, 1, 45-56 (2018) · Zbl 1390.93223
[17] Meyer, P. J.; Girard, A.; Witrant, E., Compositional abstraction and safety synthesis using overlapping symbolic models, IEEE Trans. Autom. Control, 63, 6, 1835-1841 (2018) · Zbl 1395.93398
[18] Mouelhi, S.; Girard, A.; Gössler, G., Cosyma: a tool for controller synthesis using multi-scale abstractions, Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control. Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, HSCC ’13, 83-88 (2013), ACM: ACM New York, NY, USA
[19] Pola, G.; Tabuada, P., Symbolic models for nonlinear control systems: alternating approximate bisimulations, SIAM J. Control Optim., 48, 2, 719-733 (2009) · Zbl 1194.93020
[20] Pola, G.; Pepe, P.; Di Benedetto, M. D., Symbolic models for networks of discrete-time nonlinear control systems, Proceedings of the American Control Conference (ACC), 1787-1792 (2014)
[21] Pola, G.; Pepe, P.; Di Benedetto, M. D., Symbolic models for networks of control systems, IEEE Trans. Autom. Control, 61, 11, 3663-3668 (2016) · Zbl 1359.93039
[22] Reissig, G.; Weber, A.; Rungger, M., Feedback refinement relations for the synthesis of symbolic controllers, IEEE Trans. Autom. Control, 62, 4, 1781-1796 (2017) · Zbl 1366.93363
[23] Reissig, G., Computing abstractions of nonlinear systems, IEEE Trans. Autom. Control, 56, 11, 2583-2598 (2011) · Zbl 1368.93178
[24] Rungger, M.; Zamani, M., Compositional construction of approximate abstractions, Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control. Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, HSCC ’15, 68-77 (2015), ACM · Zbl 1364.93286
[25] Rungger, M.; Zamani, M., Scots: A tool for the synthesis of symbolic controllers, Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control. Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, HSCC ’16, 99-104 (2016), ACM: ACM NY, USA · Zbl 1364.93267
[26] Rungger, M.; Zamani, M., Compositional construction of approximate abstractions of interconnected control systems, IEEE Trans. Control Netw. Syst., 5, 1, 116-127 (2018) · Zbl 06989015
[27] Y.R. Strz, A. Eichler, R.S. Smith, Distributed control design for heterogeneous interconnected systems, 2020.
[28] Tabuada, P., Verification and Control of Hybrid Systems (2009), Springer
[29] van der Schaft, A. J., Equivalence of dynamical systems by bisimulation, IEEE Trans. Autom. Control, 49, 12, 2160-2172 (2004) · Zbl 1365.93212
[30] Weber, A.; Rungger, M.; Reissig, G., Optimized state space grids for abstractions, IEEE Trans. Autom. Control, 62, 11, 5816-5821 (2017) · Zbl 1390.93419
[31] Wongpiromsarn, T.; Topcu, U.; Ozay, N.; Xu, H.; Murray, R., Tulip: A software toolbox for receding horizon temporal logic planning, Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control. Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control, HSCC ’11, 313-314 (2011), ACM: ACM NY, USA
[32] Zamani, M.; Pola, G.; Mazo, M.; Tabuada, P., Symbolic models for nonlinear control systems without stability assumptions, IEEE Trans. Autom. Control, 57, 7, 1804-1809 (2012) · Zbl 1369.93002
[33] Zamani, M.; Esfahani, P.; Majumdar, R.; Abate, A.; Lygeros, J., Symbolic control of stochastic systems via approximately bisimilar finite abstractions, IEEE Trans. Autom. Control, 59, 12, 3135-3150 (2014) · Zbl 1360.93445
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.