×

A survey of privacy-preserving mechanisms for heterogeneous data types. (English) Zbl 1486.68056

Summary: Due to the pervasiveness of always connected devices, large amounts of heterogeneous data are continuously being collected. Beyond the benefits that accrue for the users, there are private and sensitive information that is exposed. Therefore, Privacy-Preserving Mechanisms (PPMs) are crucial to protect users’ privacy. In this paper, we perform a thorough study of the state of the art on the following topics: heterogeneous data types, PPMs, and tools for privacy protection. Building from the achieved knowledge, we propose a privacy taxonomy that establishes a relation between different types of data and suitable PPMs for the characteristics of those data types. Moreover, we perform a systematic analysis of solutions for privacy protection, by presenting and comparing privacy tools. From the performed analysis, we identify open challenges and future directions, namely, in the development of novel PPMs.

MSC:

68P27 Privacy of data
68-02 Research exposition (monographs, survey articles) pertaining to computer science
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Yan, Z.; Zhang, P.; Vasilakos, A. V., A survey on trust management for Internet of Things, J. Netw. Comput. Appl., 42, 120-134 (2014)
[2] Clement, J., Online privacy in the United States - statistics & facts (2020), https://www.statista.com/topics/2476/online-privacy/ (consulted in September 2020)
[3] Aldeen, Y. A.A. S.; Salleh, M.; Razzaque, M. A., A comprehensive review on privacy preserving data mining, SpringerPlus, 4, 1, 694 (2015)
[4] Shah, A.; Gulati, R., Privacy preserving data mining: Techniques classification and implications—A survey, Int. J. Comput. Appl., 137, 12, 40-46 (2016)
[5] Mendes, R.; Vilela, J. P., Privacy-preserving data mining: Methods, metrics, and applications, IEEE Access, 5, 10562-10582 (2017)
[6] Shokri, R.; Theodorakopoulos, G.; Troncoso, C.; Hubaux, J.-P.; Le Boudec, J.-Y., Protecting location privacy: Optimal strategy against localization attacks, (Proceedings of the 2012 ACM Conference on Computer and Communications Security. Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS ’12 (2012), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 617-627
[7] Prasser, F.; Kohlmayer, F., Putting statistical disclosure control into practice: The arx data anonymization tool, (Medical Data Privacy Handbook (2015), Springer International Publishing: Springer International Publishing Cham), 111-148
[8] M. Terrovitis, D. Tsitsigkos, Amnesia, Institute for the Management of Information Systems, https://amnesia.openaire.eu/ (consulted in September 2020).
[9] R. Shokri, V. Bindschaedler, G. Theodorakopoulos, G. Danezis, J.-P. Hubaux, J.-Y. Le Boudec, Location-Privacy and Mobility Meter, http://icapeople.epfl.ch/rshokri/lpm/doc/index.html (consulted in September 2020).
[10] Primault, V.; Maouche, M.; Boutet, A.; Mokhtar, S. B.; Bouchenak, S.; Brunie, L., ACCIO: How to make location privacy experimentation open and easy, (2018 IEEE 38th International Conference on Distributed Computing Systems, ICDCS (2018), IEEE), 896-906
[11] Sharma, M.; Chaudhary, A.; Mathuria, M.; Chaudhary, S., A review study on the privacy preserving data mining techniques and approaches, Int. J. Comput. Sci. Telecommun., 4, 9, 42-46 (2013)
[12] Puri, V.; Sachdeva, S.; Kaur, P., Privacy preserving publication of relational and transaction data: Survey on the anonymization of patient data, Comp. Sci. Rev., 32, 45-61 (2019)
[13] Kanwal, T.; Anjum, A.; Khan, A., Privacy preservation in e-health cloud: Taxonomy, privacy requirements, feasibility analysis, and opportunities, Cluster Comput., 1-25 (2020)
[14] Aggarwal, C. C.; Philip, S. Y., A general survey of privacy-preserving data mining models and algorithms, (Privacy-Preserving Data Mining: Models and Algorithms (2008), Springer US: Springer US Boston, MA), 11-52
[15] Top 10 IoT sensor types (2019), https://behrtech.com/blog/top-10-iot-sensor-types/ (consulted in September 2020)
[16] Group, B. D.W., Big data taxonomy (2014), https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Big_Data_Taxonomy.pdf (consulted in September 2020)
[17] Efraim, T.; Sharda, R.; Delen, D., Business Intelligence and Analytics: Systems for Decision Support (2010), Prentice Hall: Prentice Hall New Jersey
[18] Gupta, T., Types of Data Sets in Data Science, Data Mining & Machine Learning (2019), https://towardsdatascience.com/types-of-data-sets-in-data-science-data-mining-machine-learning-eb47c80af7a (consulted in September 2020)
[19] Wang, L., Heterogeneous data and big data analytics, Autom. Control Inf. Sci., 3, 1, 8-15 (2017)
[20] Patgiri, R., A taxonomy on big data: Survey (2019), arXiv:1808.08474
[21] Xiao, X.; Tao, Y., Anatomy: Simple and effective privacy preservation, (Proceedings of the 32nd International Conference on Very Large Data Bases. Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB ’06 (2006), VLDB Endowment), 139-150
[22] Li, T.; Li, N.; Zhang, J.; Molloy, I., Slicing: A new approach for privacy preserving data publishing, IEEE Trans. Knowl. Data Eng., 24, 3, 561-574 (2012)
[23] Fung, B. C.; Wang, K.; Chen, R.; Yu, P. S., Privacy-preserving data publishing: A survey of recent developments, ACM Comput. Surv., 42, 4, 1-53 (2010)
[24] Samarati, P.; Sweeney, L., Protecting Privacy when Disclosing Information: k-Anonymity and Its Enforcement Through Generalization and SuppressionTech. Rep. (1998), SRI International
[25] Samarati, P.; Sweeney, L., Generalizing data to provide anonymity when disclosing information, (PODS, vol. 98 (1998), Citeseer), 188
[26] Truta, T. M.; Vinay, B., Privacy protection: p-sensitive k-anonymity property, (22nd International Conference on Data Engineering Workshops, ICDEW’06 (2006), IEEE), 94
[27] Machanavajjhala, A.; Gehrke, J.; Kifer, D.; Venkitasubramaniam, M., \( \ell \)-diversity: Privacy beyond k-anonymity, (22nd International Conference on Data Engineering, ICDE’06 (2006), IEEE), 24
[28] Rajendran, K.; Jayabalan, M.; Rana, M. E., A study on k-anonymity, l-diversity, and t-closeness techniques, Int. J. Comput. Sci. Netw. Secur., 17, 12, 172 (2017)
[29] Li, N.; Li, T.; Venkatasubramanian, S., t-closeness: Privacy beyond k-anonymity and l-diversity, (2007 IEEE 23rd International Conference on Data Engineering (2007), IEEE), 106-115
[30] Susan, V. S.; Christopher, T., Anatomisation with slicing: A new privacy preservation approach for multiple sensitive attributes, SpringerPlus, 5, 1, 1-21 (2016)
[31] Wang, M.; Jiang, Z.; Zhang, Y.; Yang, H., T-closeness slicing: A new privacy-preserving approach for transactional data publishing, INFORMS J. Comput., 30, 3, 438-453 (2018) · Zbl 1461.91176
[32] Dwork, C., Differential privacy, (Automata, Languages and Programming (2006), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 1-12 · Zbl 1133.68330
[33] Dwork, C., Differential privacy: A survey of results, (Theory and Applications of Models of Computation (2008), Springer: Springer Berlin, Heidelberg), 1-19 · Zbl 1139.68339
[34] Dwork, C.; McSherry, F.; Nissim, K.; Smith, A., Calibrating noise to sensitivity in private data analysis, (Theory of Cryptography (2006), Springer: Springer Berlin, Heidelberg), 265-284 · Zbl 1112.94027
[35] Dwork, C.; Roth, A., The algorithmic foundations of differential privacy, Found. Trends Theor. Comput. Sci., 9, 3-4, 211-407 (2014) · Zbl 1302.68109
[36] Chen, R.; Mohammed, N.; Fung, B. C.; Desai, B. C.; Xiong, L., Publishing set-valued data via differential privacy, Proc. VLDB Endow., 4, 11, 1087-1098 (2011)
[37] Uhlerop, C.; Slavković, A.; Fienberg, S. E., Privacy-preserving data sharing for genome-wide association studies, J. Priv. Confid., 5, 1, 137 (2013)
[38] Fan, L., Image pixelization with differential privacy, (Data and Applications Security and Privacy XXXII (2018), Springer International Publishing: Springer International Publishing Cham), 148-162
[39] Bebensee, B., Local differential privacy: A tutorial (2019), arXiv:1907.11908
[40] Kasiviswanathan, S. P.; Lee, H. K.; Nissim, K.; Raskhodnikova, S.; Smith, A., What can we learn privately?, SIAM J. Comput., 40, 3, 793-826 (2011) · Zbl 1235.68093
[41] Erlingsson, Ú.; Pihur, V.; Korolova, A., RAPPOR: Randomized aggregatable privacy-preserving ordinal response, (Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS ’14 (2014), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 1054-1067
[42] Differential Privacy Team, A., Learning with privacy at scale (2017), https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
[43] Ding, B.; Kulkarni, J.; Yekhanin, S., Collecting telemetry data privately, (Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., Advances in Neural Information Processing Systems 30 (2017), Curran Associates, Inc.), 3571-3580
[44] Wang, T.; Blocki, J.; Li, N.; Jha, S., Locally differentially private protocols for frequency estimation, (26th USENIX Security Symposium, USENIX Security 17 (2017), USENIX Association: USENIX Association Vancouver, BC), 729-745, https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tianhao
[45] Qin, Z.; Yang, Y.; Yu, T.; Khalil, I.; Xiao, X.; Ren, K., Heavy hitter estimation over set-valued data with local differential privacy, (Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16 (2016), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 192-203
[46] Yang, M.; Lyu, L.; Zhao, J.; Zhu, T.; Lam, K.-Y., Local differential privacy and its applications: A comprehensive survey (2020), arXiv:2008.03686
[47] Ye, Q.; Hu, H.; Meng, X.; Zheng, H., PrivKV: Key-value data collection with local differential privacy, (2019 IEEE Symposium on Security and Privacy, SP (2019), IEEE), 317-331
[48] Wang, N.; Xiao, X.; Yang, Y.; Zhao, J.; Hui, S. C.; Shin, H.; Shin, J.; Yu, G., Collecting and analyzing multidimensional data with local differential privacy, (2019 IEEE 35th International Conference on Data Engineering, ICDE (2019), IEEE), 638-649
[49] X. Xiao, Y. Tao, Personalized privacy preservation, in: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, 2006, pp. 229-240.
[50] Yuan, M.; Chen, L.; Yu, P. S., Personalized privacy protection in social networks, Proc. VLDB Endow., 4, 2, 141-150 (2010)
[51] Agir, B.; Papaioannou, T. G.; Narendula, R.; Aberer, K.; Hubaux, J.-P., User-side adaptive protection of location privacy in participatory sensing, GeoInformatica, 18, 1, 165-191 (2014)
[52] Komishani, E. G.; Abadi, M.; Deldar, F., PPTD: Preserving personalized privacy in trajectory data publishing by sensitive attribute generalization and trajectory local suppression, Knowl.-Based Syst., 94, 43-59 (2016)
[53] Zhou, B.; Pei, J.; Luk, W., A brief survey on anonymization techniques for privacy preserving publishing of social network data, ACM SIGKDD Explor. Newsl., 10, 2, 12-22 (2008)
[54] Wu, X.; Ying, X.; Liu, K.; Chen, L., A survey of privacy-preservation of graphs and social networks, (Managing and Mining Graph Data (2010), Springer: Springer Boston, MA), 421-453
[55] Casas-Roma, J.; Herrera-Joancomartí, J.; Torra, V., A survey of graph-modification techniques for privacy-preserving on networks, Artif. Intell. Rev., 47, 3, 341-366 (2017)
[56] Liu, K.; Terzi, E., Towards identity anonymization on graphs, (Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08 (2008), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 93-106
[57] Zheleva, E.; Getoor, L., Preserving the privacy of sensitive relationships in graph data, (Privacy, Security, and Trust in KDD (2008), Springer: Springer Berlin, Heidelberg), 153-171
[58] Yang, X.; Li, C., Secure XML publishing without information leakage in the presence of data inference, (Proceedings of the Thirtieth International Conference on Very Large Data Bases - Volume 30. Proceedings of the Thirtieth International Conference on Very Large Data Bases - Volume 30, VLDB ’04 (2004), VLDB Endowment), 96-107
[59] Landberg, A. H.; Nguyen, K.; Pardede, E.; Rahayu, J. W., \( \delta \)-dependency for privacy-preserving XML data publishing, J. Biomed. Inform., 50, 77-94 (2014)
[60] Saygin, Y.; Hakkini-Tur, D.; Tur, G., Sanitization and anonymization of document repositories, (Web and Information Security (2006), IGI Global), 133-148
[61] Chakaravarthy, V. T.; Gupta, H.; Roy, P.; Mohania, M. K., Efficient techniques for document sanitization, (Proceedings of the 17th ACM Conference on Information and Knowledge Management. Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM ’08 (2008), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 843-852
[62] Jiang, W.; Murugesan, M.; Clifton, C.; Si, L., t-plausibility: Semantic preserving text sanitization, (2009 International Conference on Computational Science and Engineering, Vol. 3 (2009), IEEE), 68-75
[63] Anandan, B.; Clifton, C.; Jiang, W.; Murugesan, M.; Pastrana-Camacho, P.; Si, L., t-plausibility: Generalizing words to desensitize text, Trans. Data Priv., 5, 3, 505-534 (2012)
[64] Xu, Y.; Wang, K.; Fu, A. W.-C.; Yu, P. S., Anonymizing transaction databases for publication, (Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08 (2008), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 767-775
[65] Terrovitis, M.; Mamoulis, N.; Kalnis, P., Privacy-preserving anonymization of set-valued data, Proc. VLDB Endow., 1, 1, 115-125 (2008)
[66] He, Y.; Naughton, J. F., Anonymization of set-valued data via top-down, local generalization, Proc. VLDB Endow., 2, 1, 934-945 (2009)
[67] Liu, J.; Wang, K., Anonymizing transaction data by integrating suppression and generalization, (Advances in Knowledge Discovery and Data Mining (2010), Springer: Springer Berlin, Heidelberg), 171-180
[68] Ghinita, G.; Kalnis, P.; Tao, Y., Anonymous publication of sensitive transactional data, IEEE Trans. Knowl. Data Eng., 23, 2, 161-174 (2010)
[69] Sakpere, A. B.; Kayem, A. V., A state-of-the-art review of data stream anonymization schemes, (Information Security in Diverse Computing Environments (2014), IGI Global), 24-50
[70] Li, J.; Ooi, B. C.; Wang, W., Anonymizing streaming data for privacy protection, (2008 IEEE 24th International Conference on Data Engineering (2008), IEEE), 1367-1369
[71] Cao, J.; Carminati, B.; Ferrari, E.; Tan, K.-L., Castle: Continuously anonymizing data streams, IEEE Trans. Dependable Secure Comput., 8, 3, 337-352 (2010)
[72] Zhou, B.; Han, Y.; Pei, J.; Jiang, B.; Tao, Y.; Jia, Y., Continuous privacy preserving publishing of data streams, (Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology. Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, EDBT ’09 (2009), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 648-659
[73] Kim, S.; Sung, M. K.; Chung, Y. D., A framework to preserve the privacy of electronic health data streams, J. Biomed. Inform., 50, 95-106 (2014)
[74] Wang, J.; Zhu, R.; Liu, S., A differentially private unscented Kalman filter for streaming data in IoT, IEEE Access, 6, 6487-6495 (2018)
[75] Al-Hussaeni, K.; Fung, B. C.; Cheung, W. K., Privacy-preserving trajectory stream publishing, Data Knowl. Eng., 94, 89-109 (2014)
[76] Wang, J.; Deng, C.; Li, X., Two privacy-preserving approaches for publishing transactional data streams, IEEE Access, 6, 23648-23658 (2018)
[77] Zhang, J.; Li, H.; Liu, X.; Luo, Y.; Chen, F.; Wang, H.; Chang, L., On efficient and robust anonymization for privacy protection on massive streaming categorical information, IEEE Trans. Dependable Secure Comput., 14, 5, 507-520 (2015)
[78] Chamikara, M. A.P.; Bertók, P.; Liu, D.; Camtepe, S.; Khalil, I., Efficient data perturbation for privacy preserving and accurate data stream mining, Pervasive Mob. Comput., 48, 1-19 (2018)
[79] Denham, B.; Pears, R.; Naeem, M. A., Enhancing random projection with independent and cumulative additive noise for privacy-preserving data stream mining, Expert Syst. Appl., 152, Article 113380 pp. (2020)
[80] Sampigethaya, K.; Poovendran, R., A survey on mix networks and their secure applications, Proc. IEEE, 94, 12, 2142-2181 (2006)
[81] Beresford, A. R.; Stajano, F., Location privacy in pervasive computing, IEEE Pervasive Comput., 2, 1, 46-55 (2003)
[82] Andrés, M. E.; Bordenabe, N. E.; Chatzikokolakis, K.; Palamidessi, C., Geo-indistinguishability: Differential privacy for location-based systems, (Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security. Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, CCS ’13 (2013), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 901-914
[83] Chatzikokolakis, K.; Elsalamouny, E.; Palamidessi, C., Efficient utility improvement for location privacy, Proc. Privacy Enhanc. Technol., 2017, 4, 308-328 (2017)
[84] Oya, S.; Troncoso, C.; Pérez-González, F., Rethinking location privacy for unknown mobility behaviors, (2019 IEEE European Symposium on Security and Privacy, EuroS&P (2019), IEEE), 416-431
[85] Al-Dhubhani, R.; Cazalas, J. M., An adaptive geo-indistinguishability mechanism for continuous LBS queries, Wirel. Netw., 24, 8, 3221-3239 (2018)
[86] Mendes, R.; Cunha, M.; Vilela, J. P., Impact of frequency of location reports on the privacy level of geo-indistinguishability, Proc. Privacy Enhanc. Technol., 2020, 2, 379-396 (2020)
[87] Cunha, M.; Mendes, R.; Vilela, J. P., Clustering geo-indistinguishability for privacy of continuous location traces, (2019 4th International Conference on Computing, Communications and Security, ICCCS (2019), IEEE), 1-8
[88] Cole, R. A.; Yan, Y.; Mak, B.; Fanty, M.; Bailey, T., The contribution of consonants versus vowels to word recognition in fluent speech, (1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Vol. 2 (1996), IEEE), 853-856
[89] Kewley-Port, D.; Burkle, T. Z.; Lee, J. H., Contribution of consonant versus vowel information to sentence intelligibility for young normal-hearing and elderly hearing-impaired listeners, J. Acoust. Soc. Am., 122, 4, 2365-2375 (2007)
[90] Chen, F.; Adcock, J.; Krishnagiri, S., Audio privacy: Reducing speech intelligibility while preserving environmental sounds, (Proceedings of the 16th ACM International Conference on Multimedia. Proceedings of the 16th ACM International Conference on Multimedia, MM ’08 (2008), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 733-736
[91] Liaqat, D.; Nemati, E.; Rahman, M.; Kuang, J., A method for preserving privacy during audio recordings by filtering speech, (2017 IEEE Life Sciences Conference, LSC (2017), IEEE), 79-82
[92] Larson, E. C.; Lee, T.; Liu, S.; Rosenfeld, M.; Patel, S. N., Accurate and privacy preserving cough sensing using a low-cost microphone, (Proceedings of the 13th International Conference on Ubiquitous Computing. Proceedings of the 13th International Conference on Ubiquitous Computing, UbiComp ’11 (2011), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 375-384
[93] Kumar, S.; Nguyen, L. T.; Zeng, M.; Liu, K.; Zhang, J., Sound shredding: Privacy preserved audio sensing, (Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications. Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, HotMobile ’15 (2015), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 135-140
[94] Boyle, M.; Edwards, C.; Greenberg, S., The effects of filtered video on awareness and privacy, (Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work. Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, CSCW ’00 (2000), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 1-10
[95] Wickramasuriya, J.; Datt, M.; Mehrotra, S.; Venkatasubramanian, N., Privacy protecting data collection in media spaces, (Proceedings of the 12th Annual ACM International Conference on Multimedia. Proceedings of the 12th Annual ACM International Conference on Multimedia, MULTIMEDIA ’04 (2004), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 48-55
[96] Senior, A.; Pankanti, S.; Hampapur, A.; Brown, L.; Tian, Y.-L.; Ekin, A.; Connell, J.; Shu, C. F.; Lu, M., Enabling video privacy through computer vision, IEEE Secur. Priv., 3, 3, 50-57 (2005)
[97] Dufaux, F.; Ebrahimi, T., Scrambling for privacy protection in video surveillance systems, IEEE Trans. Circuits Syst. Video Technol., 18, 8, 1168-1174 (2008)
[98] Upmanyu, M.; Namboodiri, A. M.; Srinathan, K.; Jawahar, C., Efficient privacy preserving video surveillance, (2009 IEEE 12th International Conference on Computer Vision (2009), IEEE), 1639-1646
[99] Wang, H.; Hong, Y.; Kong, Y.; Vaidya, J., Publishing video data with indistinguishable objects, (Advances in Database Technology - EDBT 2020 (2020), OpenProceedings.org), 323-334
[100] Kaaniche, N.; Laurent, M., Data security and privacy preservation in cloud storage environments based on cryptographic mechanisms, Comput. Commun., 111, 120-141 (2017)
[101] Clifton, C.; Kantarcioglu, M.; Vaidya, J.; Lin, X.; Zhu, M. Y., Tools for privacy preserving distributed data mining, ACM SIGKDD Explor. Newsl., 4, 2, 28-34 (2002)
[102] Pinkas, B., Cryptographic techniques for privacy-preserving data mining, ACM SIGKDD Explor. Newsl., 4, 2, 12-19 (2002)
[103] Goldreich, O., Secure multi-party computation (1998), Manuscript. Preliminary version 78
[104] Lindell, Y., Secure multiparty computation for privacy preserving data mining, (Encyclopedia of Data Warehousing and Mining (2005), IGI global), 1005-1009
[105] Even, S.; Goldreich, O.; Lempel, A., A randomized protocol for signing contracts, Commun. ACM, 28, 6, 637-647 (1985)
[106] Huang, Y.; Evans, D.; Katz, J.; Malka, L., Faster secure two-party computation using garbled circuits, (Proceedings of the 20th USENIX Conference on Security. Proceedings of the 20th USENIX Conference on Security, SEC’11 (2011), USENIX Association: USENIX Association USA), 35
[107] Bellare, M.; Hoang, V. T.; Rogaway, P., Foundations of garbled circuits, (Proceedings of the 2012 ACM Conference on Computer and Communications Security. Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS ’12 (2012), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 784-796
[108] Freedman, M. J.; Nissim, K.; Pinkas, B., Efficient private matching and set intersection, (International Conference on the Theory and Applications of Cryptographic Techniques (2004), Springer), 1-19 · Zbl 1122.94416
[109] Gentry, C., Fully homomorphic encryption using ideal lattices, (Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing. Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC ’09 (2009), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 169-178 · Zbl 1304.94059
[110] Fun, T. S.; Samsudin, A., A survey of homomorphic encryption for outsourced big data computation, KSII Trans. Internet Inf. Syst., 10, 8, 3826-3851 (2016)
[111] Jiang, W.; Clifton, C., Privacy-preserving distributed k-anonymity, (IFIP Annual Conference on Data and Applications Security and Privacy (2005), Springer), 166-177 · Zbl 1158.68383
[112] Jiang, W.; Clifton, C., A secure distributed framework for achieving k-anonymity, VLDB J., 15, 4, 316-333 (2006)
[113] Mohammed, N.; Fung, B. C.; Debbabi, M., Anonymity meets game theory: Secure data integration with malicious participants, VLDB J., 20, 4, 567-588 (2011)
[114] Chor, B.; Goldreich, O.; Kushilevitz, E.; Sudan, M., Private information retrieval, (Proceedings of IEEE 36th Annual Foundations of Computer Science (1995), IEEE), 41-50 · Zbl 0938.68625
[115] Ostrovsky, R.; Skeith, W. E., Private searching on streaming data, (Advances in Cryptology - CRYPTO 2005 (2005), Springer: Springer Berlin, Heidelberg), 223-240 · Zbl 1145.94472
[116] Ostrovsky, R.; Skeith, W. E., Private searching on streaming data, J. Cryptol., 20, 4, 397-430 (2007) · Zbl 1132.68023
[117] Ghinita, G.; Kalnis, P.; Khoshgozaran, A.; Shahabi, C.; Tan, K.-L., Private queries in location based services: Anonymizers are not necessary, (Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08 (2008), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 121-132
[118] Akgün, M.; Bayrak, A. O.; Ozer, B.; Sağıroğlu, M.Ş., Privacy preserving processing of genomic data: A survey, J. Biomed. Inform., 56, 103-111 (2015)
[119] Naveed, M.; Ayday, E.; Clayton, E. W.; Fellay, J.; Gunter, C. A.; Hubaux, J.-P.; Malin, B. A.; Wang, X., Privacy in the genomic era, ACM Comput. Surv., 48, 1, 1-44 (2015)
[120] Aziz, M. M.A.; Sadat, M. N.; Alhadidi, D.; Wang, S.; Jiang, X.; Brown, C. L.; Mohammed, N., Privacy-preserving techniques of genomic data—a survey, Brief. Bioinform., 20, 3, 887-895 (2019)
[121] Ayday, E.; Raisaro, J. L.; Hengartner, U.; Molyneaux, A.; Hubaux, J.-P., Privacy-preserving processing of raw genomic data, (Garcia-Alfaro, J.; Lioudakis, G.; Cuppens-Boulahia, N.; Foley, S.; Fitzgerald, W. M., Data Privacy Management and Autonomous Spontaneous Security (2013), Springer: Springer Berlin, Heidelberg), 133-147
[122] Shi, E.; Chan, T. H.; Rieffel, E.; Chow, R.; Song, D., Privacy-preserving aggregation of time-series data, (Proc. NDSS, Vol. 2 (2011), Citeseer), 1-17
[123] Kaur, M.; Kumar, V., A comprehensive review on image encryption techniques, Arch. Comput. Methods Eng., 27, 1, 15-43 (2020)
[124] Xia, Z.; Wang, X.; Zhang, L.; Qin, Z.; Sun, X.; Ren, K., A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing, IEEE Trans. Inf. Forensics Secur., 11, 11, 2594-2608 (2016)
[125] Shen, M.; Cheng, G.; Zhu, L.; Du, X.; Hu, J., Content-based multi-source encrypted image retrieval in clouds with privacy preservation, Future Gener. Comput. Syst., 109, 621-632 (2020)
[126] Yu, J.; Zhang, B.; Kuang, Z.; Lin, D.; Fan, J., iPrivacy: Image privacy protection by identifying sensitive objects via deep multi-task learning, IEEE Trans. Inf. Forensics Secur., 12, 5, 1005-1016 (2016)
[127] Barker, K.; Askari, M.; Banerjee, M.; Ghazinour, K.; Mackas, B.; Majedi, M.; Pun, S.; Williams, A., A data privacy taxonomy, (Sexton, A. P., Dataspace: The Final Frontier (2009), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 42-54
[128] Mehta, B. B.; Rao, U. P., Privacy preserving unstructured big data analytics: Issues and challenges, Procedia Comput. Sci., 78, 120-124 (2016)
[129] Victor, N.; Lopez, D.; Abawajy, J. H., Privacy models for big data: A survey, Int. J. Big Data Intell., 3, 1, 61-75 (2016)
[130] Prasser, F.; Eicher, J.; Spengler, H.; Bild, R.; Kuhn, K. A., Flexible data anonymization using ARX—Current status and challenges ahead, Softw. - Pract. Exp., 50, 7, 1277-1304 (2020)
[131] ARX - Data Anonymization Tool, ARX https://arx.deidentifier.org/ (consulted in September 2020).
[132] M. Terrovitis, D. Tsitsigkos, Amnesia Dashboard, Institute for the Management of Information Systems, https://amnesia.openaire.eu/amnesia/ (consulted in September 2020).
[133] sdcTools, Joinup https://joinup.ec.europa.eu/solution/sdctools-tools-statistical-disclosure-control/about (consulted in September 2020).
[134] \( \mu \)-ARGUS, https://github.com/sdcTools/muargus (consulted in September 2020).
[135] \( \tau \)-ARGUS, https://github.com/sdcTools/tauargus (consulted in September 2020).
[136] sdcMicro: Statistical Disclosure Control Methods for Anonymization of Data and Risk Estimation, sdcMicro https://cran.r-project.org/package=sdcMicro (consulted in September 2020).
[137] . Realrolfje, Anonimatron, https://realrolfje.github.io/anonimatron/ (consulted in September 2020).
[138] Aircloak, https://aircloak.com (consulted in September 2020).
[139] El Emam, K., Guide to the de-Identification of Personal Health Information (2013), CRC Press
[140] Center, E. P.I., Concerning the re-identification of consumer information (2017), https://epic.org/privacy/reidentification (consulted in September 2020)
[141] Mendes, R.; Vilela, J., On the effect of update frequency on geo-indistinguishability of mobility traces, (Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks (2018), ACM), 271-276
[142] Krumm, J., A survey of computational location privacy, Pers. Ubiquitous Comput., 13, 6, 391-399 (2009)
[143] Basu, K.; Debusschere, V.; Bacha, S., Residential appliance identification and future usage prediction from smart meter, (IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society (2013), IEEE), 4994-4999
[144] S. Sami, Y. Dai, S.R.X. Tan, N. Roy, J. Han, Spying with your robot vacuum cleaner: Eavesdropping via lidar sensors, in: Proceedings of the 18th Conference on Embedded Networked Sensor Systems, 2020, pp. 354-367.
[145] Lee, J.; Clifton, C., How much is enough? Choosing \(ɛ\) for differential privacy, (International Conference on Information Security (2011), Springer), 325-340
[146] Yee, K.-P., Aligning security and usability, IEEE Secur. Priv., 2, 5, 48-55 (2004)
[147] Kainda, R.; Flechais, I.; Roscoe, A., Security and usability: Analysis and evaluation, (2010 International Conference on Availability, Reliability and Security (2010), IEEE), 275-282
[148] Alshamari, M., A review of gaps between usability and security/privacy, Int. J. Commun. Netw. Syst. Sci., 9, 10, 413-429 (2016)
[149] Al-Rubaie, M.; Chang, J. M., Privacy-preserving machine learning: Threats and solutions, IEEE Secur. Priv., 17, 2, 49-58 (2019)
[150] Bae, H.; Jang, J.; Jung, D.; Jang, H.; Ha, H.; Yoon, S., Security and privacy issues in deep learning (2019), arXiv:1807.11655
[151] Hesamifard, E.; Takabi, H.; Ghasemi, M.; Wright, R. N., Privacy-preserving machine learning as a service, Proc. Privacy Enhanc. Technol., 2018, 3, 123-142 (2018)
[152] I.C.S. Institute, . U. of California-Berkeley, Teaching Privacy, http://teachingprivacy.org (consulted in September 2020), 2017.
[153] Boutet, A.; Gambs, S., Inspect what your location history reveals about you: Raising user awareness on privacy threats associated with disclosing his location data, (Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM ’19 (2019), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 2861-2864
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.