## Oscillations d’un terme d’erreur lié à la fonction totient de Jordan. (Oscillations of the error term associated with the Jordan totient function).(French)Zbl 0749.11041

S. D. Adhikari and A. Sankaranarayanan [J. Number Theory 34, 178-188 (1990; Zbl 0694.10041)] studied the error term $E_ k(x)=\sum_{n\leq k}J_ k(n)-{x^{k+1}\over (k+1)\zeta(k+1)}\text{ for } k\geq 2,$ where $$J_ k(n)=n^ k\prod_{p\mid n}(1-p^{-k})$$ denotes the $$k$$-th Jordan totient function. The present author continues this investigation. Define $$i_ k$$, $$s_ k$$ to be the lim inf, lim sup, respectively, of $$E_ k(x)x^{-k}$$ as $$x\to \infty$$ and $I_ k=\liminf_{n\in\mathbb{N}\;n\to\infty}\sum^ \infty_{d=1}{\mu(d)\over d^ k}\left({1\over 2}-\left\{{n\over d}\right\}\right).$ In loc. cit. and the present paper, respectively, it is shown that $$i_ k=I_ k- (\zeta(k+1))^{-1}$$, $$i_ k=-s_ k$$, and so it suffices to estimate $$I_ k$$. The author establishes inequalities for $$I_ k$$ that imply that ${1\over 2\zeta(k)}-{1\over (k-1)N^{k-1}} < I_ k < {1\over 2\zeta(k)}$ where $$N=N(k)\to \infty$$ as $$k\to \infty$$, and also applies an algorithm, described in the paper, to obtain close numerical upper and lower bounds for $$I_ k$$ when $$k=2,3,4$$.

### MSC:

 11N37 Asymptotic results on arithmetic functions 11A25 Arithmetic functions; related numbers; inversion formulas 11N64 Other results on the distribution of values or the characterization of arithmetic functions

Zbl 0694.10041
Full Text:

### References:

 [1] Adhikari, S.D. and Sankaranarayanan, A., On an error term related to the Jordan totient function Jk(n), J. Number Theory34 (1990), 178-188. · Zbl 0694.10041 [2] Erdös, P. and Shapiro, H.N., The existence of a distribution function for an error term related to the Euler function, Canad. J. Math.7 (1955), 63-75. · Zbl 0067.27601 [3] Montgomery, H.L., Fluctuations in the mean of Euler’s phi function, Proc. Indian Acad. Sci. (Math.Sci.)97 (1987), 239-245. · Zbl 0656.10042 [4] Y.-F.S., Pétermann, Existence of all the asymptotic λ-th means for certain arithmetical convolutions, Tsukuba J. Math.12 (1988), 241-248. · Zbl 0661.10056 [5] Pétermann, Y.-F.S., On the distribution of values of an error term related to the Euler function, Proc. Conf. Théorie des nombres Univ. Laval juillet 1987, 785-797, Walter de Gruyter, Berlin (1989). · Zbl 0685.10030 [6] Pétermann, Y.-F.S., On the average behaviour of the largest divisor of n which is prime to a fixed integer k, prépublication. · Zbl 0758.11039 [7] Walfisz, A., Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin (1963). · Zbl 0146.06003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.