Levy-Bruhl, P.; Mohamed, A.; Nourrigat, J. Spectral theory and representations of nilpotent groups. (English) Zbl 0749.35030 Bull. Am. Math. Soc., New Ser. 26, No. 2, 299-303 (1992). (Authors’ summary:) We give an estimate of the number \(N(\lambda)\) of eigenvalues \(<\lambda\) for the image under an irreducible representation of the “sublaplacian” on a stratified nilpotent Lie algebra. We also give an estimate for the trace of the heat-kernel associated with this operator. The estimates are formulated in term of geometrical objects related to the representation under consideration. An important particular case is the Schrödinger equation with polynomial electrical and magnetical fields. Reviewer: P.Hillion Cited in 4 Documents MSC: 35P20 Asymptotic distributions of eigenvalues in context of PDEs 22E27 Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.) Keywords:trace of the heat-kernel; Schrödinger equation × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129 – 206. · Zbl 0526.35080 [2] Bernard Helffer and Jean Nourrigat, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progress in Mathematics, vol. 58, Birkhäuser Boston, Inc., Boston, MA, 1985 (French). · Zbl 0446.35031 [3] Karasev and V. Maslov, Algebras with general commutation relations and their applications II, J. Soviet Math. 15 (3) (1981), 273-368. · Zbl 0482.58029 [4] A. Kirillov, Unitary representations of nilpotent groups, Russian Math. Survey 14 (1962), 53-104. · Zbl 0106.25001 [5] Pierre Gilles Lemarié, Base d’ondelettes sur les groupes de Lie stratifiés, Bull. Soc. Math. France 117 (1989), no. 2, 211 – 232 (French, with English summary). · Zbl 0711.43004 [6] P. Lévy-Bruhl, A. Mohamed and J. Nourrigat, Etude spectale d’opérateurs sur des groupes nilpotents, Séminaire ”Equations aux Dérivées Partielles”, École Polytechnique (Palaiseau), Exposé 18, 1989-90; preprint, 1991. [7] D. Manchon, Formule de Weyl pour les groupes de Lie nilpotents, Thèse, Paris, 1989. · Zbl 0721.22004 [8] Yves Meyer, Ondelettes et opérateurs. I, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990 (French). Ondelettes. [Wavelets]. · Zbl 0694.41037 [9] A. Mohamed and J. Nourrigat, Encadrement du \?(\?) pour un opérateur de Schrödinger avec un champ magnétique et un potentiel électrique, J. Math. Pures Appl. (9) 70 (1991), no. 1, 87 – 99 (French). · Zbl 0725.35068 [10] Jean Nourrigat, Inégalités \?² et représentations de groupes nilpotents, J. Funct. Anal. 74 (1987), no. 2, 300 – 327 (French). · Zbl 0644.35026 · doi:10.1016/0022-1236(87)90027-9 [11] A. Perelomov, Generalized coherent states and their applications, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1986. · Zbl 0605.22013 [12] L. Pukanszki, Leçons sur les représentations des groupes, Dunod, Paris, 1967. [13] B. Simon, Non classical eigenvalue asymptotics, J. Funct. Anal. 53 (1983), 84-98. · Zbl 0529.35064 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.