Katz, Mikhail The rational filling radius of complex projective space. (English) Zbl 0749.53032 Topology Appl. 42, No. 3, 201-215 (1991). In this paper the author computes the filling radius with rational coefficients of the complex projective \(n\)-space as \({1\over 2} \arccos(- {1\over 3})\) by a straightforward homological calculation using the Serre-spectral sequence and the Schubert calculus. He also computes the integer filling radius of the complex projective 2-space as \({1\over 2}\arccos(-{1\over 3})\) again and exhibits a torsion obstruction to filling complex projective 3-space. Reviewer: H.Özekes (İstanbul) Cited in 3 Documents MSC: 53C35 Differential geometry of symmetric spaces 53C55 Global differential geometry of Hermitian and Kählerian manifolds 14M15 Grassmannians, Schubert varieties, flag manifolds Keywords:Serre-spectral sequence; Schubert calculus; filling radius PDFBibTeX XMLCite \textit{M. Katz}, Topology Appl. 42, No. 3, 201--215 (1991; Zbl 0749.53032) Full Text: DOI References: [1] Cheeger, J.; Ebin, D. G., Comparison Theorems in Riemannian Geometry (1975), North-Holland: North-Holland Amsterdam · Zbl 0309.53035 [2] Fomenko, A. T.; Fuchs, D. B.; Gutenmacher, V. L., Homotopic Topology (1986), Akadémiai Kiadó: Akadémiai Kiadó Budapest · Zbl 0615.55001 [3] Gromov, M., Curvature, diameter, and Betti numbers, Comment. Math. Helv., 56, 179-195 (1981) · Zbl 0467.53021 [4] Gromov, M., Filling Riemannian manifolds, J. Differential Geom., 18, 1-147 (1983) · Zbl 0515.53037 [5] Gromov, M., Large Riemannian manifolds, (Curvature and Topology of Riemannian Manifolds. Curvature and Topology of Riemannian Manifolds, Proceedings, Katata, 1985. Curvature and Topology of Riemannian Manifolds. Curvature and Topology of Riemannian Manifolds, Proceedings, Katata, 1985, Lecture Notes in Mathematics, 1201 (1985), Springer: Springer Berlin) · Zbl 0601.53038 [6] Gromov, M., Width and related invariants of Riemannian manifolds, Astérisque, 163-164, 93-109 (1988) · Zbl 0684.53036 [7] Katz, M., The filling radius of two-point homogeneous spaces, J. Differential Geom., 18, 505-511 (1983) · Zbl 0529.53032 [8] Katz, M., Jung’s theorem in complex projective geometry, Quart. J. Math. Oxford Ser., 36, 2, 451-466 (1985) · Zbl 0586.53019 [9] Katz, M., Diameter-extremal subsets of spheres, Discrete Comput. Geom., 4, 117-137 (1989) · Zbl 0663.52008 [10] Katz, M., On neighborhoods of the Kuratowski imbedding beyond the first extremum of the diameter functional, Fund. Math., 137, 161-175 (1991) · Zbl 0735.46049 [12] Kuratowski, C., Quelques probèmes concernant les espaces métriques non-séparables, Fund. Math., 25, 534-545 (1935) · JFM 61.0221.02 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.