×

zbMATH — the first resource for mathematics

Microlocal analysis of diffraction by a corner. (English) Zbl 0749.58053
Analytic singularities of solutions to mixed type boundary value problems in the exterior domain of a corner are investigated. The author proves that the cone of diffracted singularities is produced by an incident ray which hits the corner. This is a proof of geometrical observation of J.-B. Keller [J. Opt. Soc. Am. 52, 116-130 (1962)].
The author’s method is based on the theory of the sheaves of Sato’s microfunctions as a framework for microlocal study of boundary value problems in a general domain.

MSC:
58J15 Relations of PDEs on manifolds with hyperfunctions
32A45 Hyperfunctions
32S70 Other operations on complex singularities
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] J. CHEEGER and M. TAYLOR , On the Diffraction of the Waves by Conical Singularities I-II (Comm. P.A.M., Vol. 35, 1982 , pp. 275-331 et 487-529). MR 84h:35091a | Zbl 0536.58032 · Zbl 0536.58032
[2] R. HARTSHORNE , Residues and Duality (Lect. Notes Math., No. 20, Springer-Verlag, 1966 ). MR 36 #5145 | Zbl 0212.26101 · Zbl 0212.26101
[3] M. KASHIWARA and T. KAWAI , On the Boundary Value Problem for Elliptic System of Linear Partial Differential Equations I-II (Proc. Jpn Acad., Vol. 48, 1972 , pp. 712-715 ; ibid., Vol. 49, 1973 , pp. 164-168). Zbl 0271.35028 · Zbl 0271.35028
[4] M. KASHIWARA , T. KAWAI and T. KIMURA , Foundations of Algebraic Analysis , Princeton University Press, 1986 . MR 87m:58156 | Zbl 0605.35001 · Zbl 0605.35001
[5] M. KASHIWARA and P. SCHAPIRA , Micro-Hyperbolic Systems (Acta Math., Vol. 142, 1979 , pp. 1-55). MR 80b:58060 | Zbl 0413.35049 · Zbl 0413.35049
[6] M. KASHIWARA and P. SCHAPIRA , Microlocal Study of Sheaves (Astérisque, Vol. 128, Soc. Math. de France, 1985 ). MR 87f:58159 | Zbl 0589.32019 · Zbl 0589.32019
[7] K. KATAOKA , A Microlocal Approach to General Boundary Value Problems (Publ. R.I.M.S., Kyoto Univ., Vol. 12, Suppl., 1977 , pp. 147-153). Article | MR 56 #9601 | Zbl 0372.35075 · Zbl 0372.35075
[8] K. KATAOKA , Microlocal Theory of Boundary Value Problems I-II (J. Fac. Sci. Univ. Tokyo, Vol. 27, 1980 , pp. 355-399 ; ibid., Vol. 28, 1981 , pp. 31-56). Zbl 0459.35098 · Zbl 0459.35098
[9] K. KATAOKA , On the Theory of Radon Transformations of Hyperfunctions (J. Fac. Sci. Univ. Tokyo, Vol. 28, 1981 , pp. 331-443). MR 84e:58067 | Zbl 0576.32008 · Zbl 0576.32008
[10] K. KATAOKA , Some Properties of Mild Hyperfunctions and an Application to Propagation of Micro-Analyticity in Boundary Value Problems (J. Fac. Sci. Univ. Tokyo, Vol. 30, 1983 , pp. 279-296). MR 85k:58071 | Zbl 0539.58035 · Zbl 0539.58035
[11] J. B. KELLER , A Geometrical Theory of Diffraction (J. Opt. Soc. Am., Vol. 52, 1962 , pp. 116-130). MR 24 #B1115
[12] H. KOMATSU and T. KAWAI , Boundary Values of Hyperfunction Solution of Linear Partial Differential Equations (Publ. R.I.M.S., Kyoto Univ., Vol. 7, 1971 , pp. 95-104). Article | MR 46 #5817 | Zbl 0225.35032 · Zbl 0225.35032
[13] G. LEBEAU , Une propriété d’invariance pour le spectre des traces (C.R. Acad. Sci. Paris, T. 294, Série I, 1982 , pp. 723-725). MR 83k:35064 | Zbl 0508.46032 · Zbl 0508.46032
[14] M. ROULEUX , Diffraction analytique sur une variété à singularité conique (Comm. P.D.E., Vol. 11 (9), 1986 , pp. 947-988). MR 88g:58182 | Zbl 0698.58049 · Zbl 0698.58049
[15] M. SATO , T. KAWAI and M. KASHIWARA , Microfunctions and Pseudo-Differential Equations (Lect. Notes Math., No. 287, Springer-Verlag, 1973 , pp. 265-529). MR 54 #8747 | Zbl 0277.46039 · Zbl 0277.46039
[16] P. SCHAPIRA , Hyperfonctions et problème aux limites elliptiques (Bull. Soc. Math. Fr., T. 99, 1971 , pp. 113-141). Numdam | MR 58 #18608 | Zbl 0188.41402 · Zbl 0188.41402
[17] P. SCHAPIRA , Propagation at the Boundary and Reflection of Analytic Singularities of Solutions of Linear Partial Differential Equations I-II (Publ. R.I.M.S., Kyoto Univ., Vol. 12, Suppl., 1977 , pp. 441-453 ; Séminaire Goulaouic-Schwartz, 1976 - 1977 , Exp. 9). Numdam | MR 58 #13217 | Zbl 0378.35065 · Zbl 0378.35065
[18] P. SCHAPIRA , Propagation at the Boundary of Analytic Singularities . In Singularities of Boundary Value Problems, Reidel Publ. Co., 1981 , pp. 185-212. MR 82m:58054 | Zbl 0472.35006 · Zbl 0472.35006
[19] P. SCHAPIRA , Front d’onde analytique au bord II (Séminaire E.D.P., Ecole Polyt., 1985 - 1986 , Exp. 13). Numdam | Zbl 0638.58027 · Zbl 0638.58027
[20] P. SCHAPIRA , Microfunctions for Boundary Value Problems . In Prospect in Algebraic Analysis, Papers dedicated to M. Sato, Academic Press, 1989 , pp. 809-819. MR 90g:58122 | Zbl 0715.58037 · Zbl 0715.58037
[21] P. SCHAPIRA , Propagation of Regularity Up to Non Smooth Boundary (Journée E.D.P., Saint-Jean-de-Monts, Publ. École Polyt., 1987 ). Numdam
[22] P. SCHAPIRA , Microdifferential Systems in the Complex Domain (Grundlehren der math. Wissenschaften, Vol. 269, Springer-Verlag, 1985 ). MR 87k:58251 | Zbl 0554.32022 · Zbl 0554.32022
[23] J. SJÖSTRAND , Propagation of Analytic Singularities for Second Order Dirichlet Problems I-II-III (Comm. P.D.E., Vol. 5, 1980 , pp. 41-94 ; ibid., pp. 187-207 ; ibid., Vol. 6, 1981 , pp. 499-567). Zbl 0524.35032 · Zbl 0524.35032
[24] M. UCHIDA , On the Complex C\Lambda Attached to a Certain Class of Lagrangian Set (Proc. Jpn Acad., Vol. 64, 1988 , pp. 126-129). MR 90e:58144 | Zbl 0679.58042 · Zbl 0679.58042
[25] M. UCHIDA , Un théorème d’injectivité du morphisme de restriction pour les micro-fonctions (C.R. Acad. Sci. Paris, T. 308, Série I, 1989 , pp. 83-85). MR 90c:58171 | Zbl 0693.58031 · Zbl 0693.58031
[26] M. UCHIDA , Étude microlocale de la diffraction par un coin (Séminaire E.D.P., École Polyt. 1989 - 1990 , Exp. 3). Numdam | Zbl 0711.35004 · Zbl 0711.35004
[27] J.-P. VARRENNE , Diffraction par un angle ou un dièdre (C.R. Acad. Sci. Paris, T. 290, Série A, 1980 , pp. 175-178). MR 80m:35052 | Zbl 0432.35048 · Zbl 0432.35048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.