Gushchin, A. A.; Mishura, Yu. S. The Davis inequalities and the Gundy decomposition for two-parameter strong martingales. I. (English. Russian original) Zbl 0749.60042 Theory Probab. Math. Stat. 42, 29-37 (1991); translation from Teor. Veroyatn. Mat. Stat., Kiev 42, 27-35 (1990). Let \(M=(M_ t)_{t\in\mathbb{R}^ 2_ +}\) be a right continuous, two- parameter strong martingale such that \(\mathbb{E}\sup_{s\leq t}M_ s<\infty\) for all \(t=(t_ 1,t_ 2)\in\mathbb{R}^ 2_ +\). The authors prove that the quadratic variation \(([M]_ t)\) of \(M\) exists and that the Davis inequalities hold: \[ C\mathbb{E}[M]_ t^{1/2}\leq\mathbb{E}\sup_{s\leq t} M_ s\leq D\mathbb{E}[M]_ t^{1/2}. \] Reviewer: E.Dettweiler (Reutlingen) Cited in 3 ReviewsCited in 2 Documents MSC: 60G44 Martingales with continuous parameter 60G48 Generalizations of martingales 60G17 Sample path properties Keywords:two-parameter strong martingale; quadratic variation; Davis inequalities PDFBibTeX XMLCite \textit{A. A. Gushchin} and \textit{Yu. S. Mishura}, Theory Probab. Math. Stat. 42, 29--37 (1990; Zbl 0749.60042); translation from Teor. Veroyatn. Mat. Stat., Kiev 42, 27--35 (1990)