Kozarovitskij, E. L. On some conditions of stability of Markov chains. (Russian) Zbl 0749.60070 Teor. Veroyatn. Mat. Stat., Kiev 44, 67-72 (1991). Conditions of stability, of recurrence, and positive recurrence of discrete Markov chains are considered. The author investigates the necessity of the following condition introduced by R. L. Tweedie [Ann. Inst. Stat. Math. 32, No. 2, 283-290 (1980; Zbl 0452.60075)]: for the initial and perturbated Markov chains with transition matrices \((p_{ij})_{i,j\geq 0}\) and \((\tilde p_{ij})_{i,j\geq 0}\) there exists such a sequence \((\delta_ i)_{i\geq 0}\), \(\delta_ i\geq 0\), that \[ (1+\delta_ i)^{-1} p_{ij}\leq\tilde p_{ij}\leq(1+\delta_ i)p_{ij},\;i\neq j,\quad\text{and}\quad\prod_{i=0}^ \infty (1+\delta_ i)<\infty. \] Reviewer: E.L.Kozarovitskij (Kiev) Cited in 1 Review MSC: 60J10 Markov chains (discrete-time Markov processes on discrete state spaces) Keywords:stability; recurrence; positive recurrence; perturbated Markov chains Citations:Zbl 0452.60075 PDFBibTeX XMLCite \textit{E. L. Kozarovitskij}, Teor. Veroyatn. Mat. Stat., Kiev 44, 67--72 (1991; Zbl 0749.60070)