×

zbMATH — the first resource for mathematics

Confidence regions in nonlinear regression models. (English) Zbl 0749.62043
Summary: New curvature measures for nonlinear regression models are developed and methods of their computing are given. Using these measures, more accurate confidence regions for parameters than those based on linear or quadratic approximations are obtained.

MSC:
62J02 General nonlinear regression
62F25 Parametric tolerance and confidence regions
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] D. M. Bates D. G. Watts: Relative curvature measures of nonlinearity. Journal of the Royal Statistical Society, Ser. B 42 (1980), 1-25. · Zbl 0455.62028
[2] D. M. Bates D. G. Watts: Parameter transformations for improved approximate confidence regions in nonlinear least squares. The Annals of Statistics 9 (1981), 1152-1167. · Zbl 0493.62060 · doi:10.1214/aos/1176345633
[3] G. E. P. Box G. A. Coutie: Application of digital computers in the exploration of functional relationships. Proc. I.E.E. 103 no. 1, part B, suppl. (1956), 100-107.
[4] G. P. I. Clarke: Marginal curvatures and their usefulness in the analysis of nonlinear regression models. Journal of the American Statistical Association 82 (1987), 844-850. · Zbl 0623.62062 · doi:10.2307/2288795
[5] R. D. Cook M. L. Goldberg: Curvatures for parameter subsets in nonlinear regression. The Annals of Statistics 14 (1986), 1399-1418. · Zbl 0651.62060 · doi:10.1214/aos/1176350166
[6] R. D. Cook J. A. Witmer: A note on parameter-effects curvature. Journal of the American Statistical Association 80 (1985), 872-878. · doi:10.1080/01621459.1985.10478196
[7] A. R. Gallant: Nonlinear regression. The American Statistician 29 (1975), 73-81. · Zbl 0328.62043 · doi:10.2307/2683268
[8] D. C. Hamilton D. G. Watts D. M. Bates: Accounting for intrinsic nonlinearity in nonlinear regression parameter inference regions. The Annals of Statistics 10(1982), 386-393. · Zbl 0537.62045 · doi:10.1214/aos/1176345780
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.