×

Structure and importance of logspace-MOD class. (English) Zbl 0749.68033

Summary: We refine the techniques of R. Beigel, J. Gill and U. Hertramp [Lect. Notes Comput. Sci. 415, 49-57 (1990; Zbl 0729.68023)] who investigated polynomial-time counting classes, in order to make them applicable to the case of logarithmic space. We define the complexity classes \({\mathcal M}{\mathcal O}{\mathcal D}_ k{\mathcal L}\) and demonstrate their significance by proving that all standard problems of linear algebra over the finite rings \(Z/kZ\) are complete for these classes. We then define new complexity classes LogFew and LogFew \({\mathcal N}{\mathcal L}\) and identify them as adequate logspace versions of Few and Few\({\mathcal P}\). We show that LogFew\({\mathcal N}{\mathcal L}\) is contained in \({\mathcal M}{\mathcal O}{\mathcal D}{\mathcal Z}_ k{\mathcal L}\) and that LogFew is contained in \({\mathcal M}{\mathcal O}{\mathcal D}_ k{\mathcal L}\) for all \(k\). Also an upper bound for \({\mathcal L}^{\#{\mathcal L}}\) in terms of computation of integer determinants is given from which we conclude that all logspace classes are contained in \({\mathcal N}{\mathcal C}^ 2\).

MSC:

68Q15 Complexity classes (hierarchies, relations among complexity classes, etc.)

Citations:

Zbl 0729.68023
Full Text: DOI

References:

[1] E. W. Allender. The complexity of sparse sets in P. InProc. 1st Structure in Complexity Conference, pp. 1-11. Lecture Notes in Computer Science, Vol. 223. Springer-Verlag, Berlin, 1986. · Zbl 0608.68035
[2] C. Àlvarez and B. Jenner. A very hard log space counting class. InProc. 5th Conference on Structure in Complexity Theory, pp. 154-168, 1990. · Zbl 0813.68098
[3] J. L. Balcácar, J. Diaz, and J. Gabarró.Structural Complexity Theory I. Springer-Verlag, New York, 1988.
[4] R. Beigel, J. Gill, and U. Hertrampf. Counting classes: threshold, parity, mods, and fewness. InProc. 7th STACS, pp. 49-57. Lecture Notes in Computer Science, Vol. 415. Springer-Verlag, Berlin, 1990. · Zbl 0729.68023
[5] S. J. Berkowitz. On computing the determinant in small parallel time using a small number of processors.Inform. process. Lett., 18:147-150, 1984. · Zbl 0541.68019 · doi:10.1016/0020-0190(84)90018-8
[6] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa. Two applications of inductive counting for complementation problems.SIAM J. Comput., 18(3):559-578, 1989. · Zbl 0678.68031 · doi:10.1137/0218038
[7] A. Borodin, J. von zur Gathen, and J. E. Hopcroft. Fast parallel matrix and gcd computations.Inform. and Control, 52:241-256, 1982. · Zbl 0507.68020 · doi:10.1016/S0019-9958(82)90766-5
[8] G. Buntrock, L. A. Hemachandra, and D. Siefkes. Using inductive counting to simulate nondeterministic computation. InProc. 15th MFCS, pp. 187-194. Lecture Notes in Computer Science, Vol. 452. Springer-Verlag, Berlin, 1990. (To appear inInform. and Comput.) · Zbl 0747.68015
[9] Jin-yi Cai and L. A. Hemachandra. On the power of parity polynomial time. InProc. 6th STACS, pp. 229-233. Lecture Notes in Computer Science, Vol. 349. Springer-Verlag, Berlin, 1989.
[10] S. A. Cook. A taxonomy of problems with fast parallel algorithms.Inform. and Control, 64:2-22, 1985. · Zbl 0575.68045 · doi:10.1016/S0019-9958(85)80041-3
[11] T. Gundermann, N. A. Nasser, and G. Wechsung. A survey on counting classes. InProc. 5th Conference on Structure in Complexity Theory, pp. 140-153, 1990.
[12] N. Immerman. Nondeterministic space is closed under complement.SIAM J. Comput., 17(5): 935-938, 1988. · Zbl 0668.68056 · doi:10.1137/0217058
[13] R. E. Ladner and N. A. Lynch. Relativization of questions about log space computability.Math. Systems Theory, 10:19-32, 1976. · Zbl 0341.68036 · doi:10.1007/BF01683260
[14] K.-J. Lange and P. Rossmanith. Characterizing unambiguous augmented pushdown automata by circuits. InProc. 15th MFCS, pp. 399-406. Lecture Notes in Computer Science, Vol. 452. Springer-Verlag, Berlin, 1990. · Zbl 0731.68038
[15] C. Meinel.Modified Branching Programs and Their Computational Power. Lecture Notes in Computer Science, Vol. 370. Springer-Verlag, Berlin, 1989. · Zbl 0669.68042
[16] K. Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. InProc. 18th STOC, pp. 338-339, 1986.
[17] C. H. Papadimitriou and S. K. Zachos. Two remarks on the power of counting. InProc. 6th GI Conference on Theoretical Computer Science, pp. 269-276. Lecture Notes in Computer Science, Vol. 145. Springer-Verlag, Berlin, 1983.
[18] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata.Acta Inform., 26:279-284, 1988. · Zbl 0638.68046 · doi:10.1007/BF00299636
[19] J. Torán. Counting the number of solutions. InProc. 15th MFCS, pp. 121-134. Lecture Notes in Computer Science, Vol. 452. Springer-Verlag, Berlin, 1990.
[20] L. G. Valiant. The relative complexity of checking and evaluating.Inform. Process. Lett., 5:20-23, 1976. · Zbl 0342.68028 · doi:10.1016/0020-0190(76)90097-1
[21] L. G. Valiant. The complexity of computing the permanent.Theoret. Comput. Sci., 8:189-201, 1979. · Zbl 0415.68008 · doi:10.1016/0304-3975(79)90044-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.