Towards a reliable implementation of least-squares collocation for higher index differential-algebraic equations. I: Basics and ansatz function choices. (English) Zbl 1484.65164

Summary: In the two parts of the present note we discuss several questions concerning the implementation of overdetermined least-squares collocation methods for higher index differential-algebraic equations (DAEs). Since higher index DAEs lead to ill-posed problems in natural settings, the discrete counterparts are expected to be very sensitive, which attaches particular importance to their implementation. In the present Part 1, we provide a robust selection of basis functions and collocation points to design the discrete problem. We substantiate a procedure for its numerical solution later in Part 2 [the authors, ibid. 89, No. 3, 965–986 (2022; Zbl 1484.65165)]. Additionally, in Part 1, a number of new error estimates are proven that support some of the design decisions.


65L80 Numerical methods for differential-algebraic equations
65L08 Numerical solution of ill-posed problems involving ordinary differential equations
65F20 Numerical solutions to overdetermined systems, pseudoinverses
34A99 General theory for ordinary differential equations


Zbl 1484.65165
Full Text: DOI


[1] Albasiny, E.L. In: Childs, B., Scott, M., Daniel, J.W., Denman, E., Nelson, P. (eds.) : A Subroutine for Solving a System of Differential Equations in Chebyshev Series, pp 280-286. Springer-Verlag, Berlin Heidelberg New York (1979)
[2] Ascher, U.; Bader, G., A new basis implementation for a mixed order boundary-value ode solver, SIAM J. Sci. Statist. Comput., 8, 483-500 (1987) · Zbl 0633.65084
[3] Ascher, U.; Spiteri, R., Collocation software for boundary-value differential-algebraic equations, SIAM J. Sci. Comput., 15, 938-952 (1994) · Zbl 0804.65080
[4] Barrio, R., Rounding error bounds for Clenshaw and Forsythe algoritms for the evaluation of orthogonal polynomial series, J. Comp. Appl. Math., 138, 185-204 (2002) · Zbl 0998.65033
[5] Beckermann, B., The condition number of real Vandermonde, Krylov and positive definite Hankel matrices, Numer. Math., 85, 553-577 (2000) · Zbl 0965.15003
[6] Campbell, SL; Moore, E., Constraint preserving integrators for general nonlinear higher index DAEs, Num. Math., 69, 383-399 (1995) · Zbl 0822.65047
[7] Davis, TA, Direct Methods for Sparse Linear Systems. Fundamentals of Algorithms (2006), Philadelphia: SIAM, Philadelphia · Zbl 1119.65021
[8] Davis, TA, Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization, ACM Trans. Math. Softw., 38, 1, 8:1-8:22 (2011) · Zbl 1365.65122
[9] Deuflhard, P., Hohmann, A.: Numerische Mathematik 1. Eine algorithmisch orientierte Einführung. De Gruyter, Berlin, Boston, 5 auflage edition (2019) · Zbl 1404.65001
[10] Driscoll, TA; Hale, N.; Trefethen, LN, Chebfun Guide (2014), Oxford: Pafnuty Publications, Oxford
[11] Fornberg, B., A Practical Guide to Pseudospectral Methods (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0844.65084
[12] Fornberg, B.; Sloan, DM, A review of pseudospectral methods for solving partial differential equations, Acta Numerica, 3, 1, 203-267 (1994) · Zbl 0808.65117
[13] Fox, L.; Parker, IB, Chebyshev Polynomials in Numerical Analysis. Oxford Mathematical Handbooks (1968), London: Oxford University Press, London · Zbl 0153.17502
[14] Galassi, M., et al: GNU Scientific Library Reference Manual. Network Theory Ltd. 3rd edition edition. Version 2.6. (2009)
[15] Gautschi, W., The condition of Vandermonde-like matrices involving orthogonal polynomials, Linear Algebra Appl., 52, /53, 293-300 (1983) · Zbl 0522.33005
[16] Gautschi, W., Gauss-Radau formulae for Jacobi and Laguerre weight functions, Math. Comput. Simul., 54, 403-412 (2000) · Zbl 0981.41017
[17] Gautschi, W., High-order Gauss-Lobatto formulae, Numer. Algorithm., 25, 213-222 (2000) · Zbl 0979.65021
[18] Gautschi, W., Optimally scaled and optimally conditioned Vandermonde and Vandermonde-like matrices, BIT Numer. Math., 51, 103-125 (2011) · Zbl 1214.65021
[19] Gautschi, W.; Inglese, G., Lower bounds for the condition number of Vandermonde matrices, Numer. Math., 52, 241-250 (1988) · Zbl 0646.15003
[20] Gladwell, I.: The development of the boundary-value codes in the ordinary differential equations chapter of the NAG library. In: Childs, B., Scott, M., Daniel, J.W., Denman, E., Nelson, P. (eds.) Codes for Boundary-Value Problems in Ordinary Differential Equations, volume 76 of Lecture Notes in Coputer Science, pp 122-143. Springer-Verlag, Berlin, Heidelberg New York (1979)
[21] Golub, GH; Welsch, JH, Calculation of Gauss quadrature rules, Math. Comp., 23, 221-230 (1969) · Zbl 0179.21901
[22] Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org(2010)
[23] Hämmerlin, G.; Hoffman, K-H, Numerical Mathematics (1991), New York: Springer Verlag, New York
[24] Hanke, M., März, R.: Towards a reliable implementation of least-squares collocation for higher-index linear differential-algebaic equations. Part 2: The discrete least-squares problem. Numerical Algorithms. submitted
[25] Hanke, M.; März, R., Convergence analysis of least-squares collocation metods for nonlinear higher-index differential-algebraic equations, J. Comp. Appl. Math., 387, 112514 (2021) · Zbl 1458.65104
[26] Hanke, M.; März, R., A reliable direct numerical treatment of differential-algebraic equations by overdetermined collocation An operator approach, J. Comp. Appl. Math., 387, 112520 (2021) · Zbl 1458.65105
[27] Hanke, M.; März, R.; Tischendorf, C., Least-squares collocation for higher-index linear differential-algebaic equations: Estimating the stability threshold, Math. Comp., 88, 318, 1647-1683 (2019) · Zbl 1455.65124
[28] Hanke, M.; März, R.; Tischendorf, C.; Weinmüller, E.; Wurm, S., Least-squares collocation for linear higher-index differential-algebraic equations, J. Comput. Appl Math., 317, 403-431 (2017) · Zbl 1357.65106
[29] Hildebrand, FB, Introduction to Numerical Analysis (1956), New York: McGraw-Hill, New York · Zbl 0070.12401
[30] Ibrahimoglu, BA, Lebesgue functions constants in polynomial interpolation, J. Lebesgue Inequal. Appl., 93, 1-15 (2016) · Zbl 1334.41001
[31] Kitzhofer, G., Koch, O., Pulverer, G., Simon, C.h., Weinmüller, E.: BVPSUITE a new MATLAB solver for singular implicit boundary value problems. ASC Report 35 Vienna University of Technology (2009) · Zbl 1432.65100
[32] Koch, O.; März, R.; Praetorius, D.; Weinmüller, E., Collocation methods for index-1 daes with singularities of the first kind, Math. Comp., 79, 281-304 (2010) · Zbl 1196.65134
[33] Lamour, R., März, R., C. Tischendorf. In: Ilchmann, A., Reis, T. (eds.) : Differential-Algebraic Equations: A Projector Based Analysis. Differential-Algebraic Equations Forum. Springer-Verlag, Berlin Heidelberg New York Dordrecht London (2013) · Zbl 1276.65045
[34] Lamour, R., März, R., Weinmüller, E. In: Ilchmann, A., Reis, T. (eds.) : Surveys in Differential-Algebraic Equations III, chapter Boundary-Value Problems for Differential-Algebraic Equations: A Survey: Differential-Algebraic Equations Forum, pp 177-309. Springer Heidelberg, New York (2015) · Zbl 1343.65102
[35] Lebedev, V-I; Barburin, OV, Calculation of principal values, weights and nodes of the Gauss quadrature formulae of integrals, U.S.S.R Comput. Math. Math. Phys., 5, 3, 81-92 (1965) · Zbl 0156.17003
[36] März, R. In: Ilchmann, A., Reis, T. (eds.) : Surveys in Differential-Algebraic Equations II, chapter Differential-Algebraic Equations from a Functional-Analytic Viewpoint: A Survey: Differential-Algebraic Equations Forum, pp 163-285. Springer Heidelberg, New York (2015) · Zbl 1333.34002
[37] Michaels, HH, Abscissas weight coefficients for Lobatto quadrature, Math Comp, 17, 237-244 (1963) · Zbl 0113.11202
[38] Robbins, H., A remark on Stirling’s formula, Amer. Math. Monthly, 62, 1, 26-29 (1955) · Zbl 0068.05404
[39] Smoktunowicz, A., Backward stability of Clenshaw’s algorithm, BIT Numer. Math., 42, 3, 600-610 (2002) · Zbl 1019.65004
[40] Stallman, R.M., GCC Developers Community, et al: Using the Gnu Compiler collection. CreateSpace, Scotts Valley (2009)
[41] Stoer, J., Numerische Mathematik 1. Springer-Lehrbuch (1989), Berlin, Heidelberg, New York, London, Paris Tokyo HongKong: Springer-Verlag, Berlin, Heidelberg, New York, London, Paris Tokyo HongKong
[42] The Numerical Algorithms Group (NAG). The nag library for fortran (2019)
[43] Trefethen, LN, Spectral methods in MATLAB (2000), Philadelphia: SIAM, Philadelphia · Zbl 0953.68643
[44] Trefethen, LN; Weideman, JAC, Two results on polynomial interpolation in equally spaced points, J Approx. Theory, 65, 247-260 (1991) · Zbl 0736.41005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.