×

Generalized multiscale finite element method for piezoelectric problem in heterogeneous media. (English) Zbl 07496051

MSC:

74-XX Mechanics of deformable solids
78-XX Optics, electromagnetic theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Topolov, Vitaly Yu; Bowen, Christopher R.; Bisegna, Paolo, Piezo-active composites: microgeometry-sensitivity relations, vol. 271 (2018), Springer
[2] Mercadelli, Elisa; Sanson, Alessandra; Galassi, Carmen, Porous piezoelectric ceramics (2010), INTECH Open Access Publisher
[3] Ringgaard, Erling; Lautzenhiser, Frans; Bierregaard, Louise M.; Zawada, Tomasz; Molz, Eric, Development of porous piezoceramics for medical and sensor applications, Materials, 8, 12, 8877-8889 (2015)
[4] Rybyanets AN. Porous ceramic and piezocomposites: Modeling, technology, and characterization. In: Advances in porous ceramics. 2016. p. 53-109.
[5] Deng, Ming-xiang; Feng, Yong-ping, Two-scale finite element method for piezoelectric problem in periodic structure, Appl Math Mech, 32, 12, 1525-1540 (2011) · Zbl 1247.35166
[6] Newnham, R. E.; Skinner, D. P.; Cross, L. E., Connectivity and piezoelectric-pyroelectric composites, Mater Res Bull, 13, 5, 525-536 (1978)
[7] Nanthakumar, SS; Lahmer, Tom; Zhuang, Xiaoying; Zi, Goangseup; Rabczuk, Timon, Detection of material interfaces using a regularized level set method in piezoelectric structures, Inverse Probl Sci Eng, 24, 1, 153-176 (2016)
[8] Ghasemi, Hamid; Park, Harold S.; Rabczuk, Timon, A level-set based IGA formulation for topology optimization of flexoelectric materials, Comput Methods Appl Mech Engrg, 313, 239-258 (2017) · Zbl 1439.74414
[9] Ghasemi, Hamid; Park, Harold S.; Rabczuk, Timon, A multi-material level set-based topology optimization of flexoelectric composites, Comput Methods Appl Mech Engrg, 332, 47-62 (2018) · Zbl 1439.74270
[10] Nemat-Nasser, Siavouche; Hori, Muneo, Micromechanics: Overall properties of heterogeneous materials (1993), Elsevier · Zbl 0924.73006
[11] Dunn, Martin L.; Taya, Minoru, An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities, Proc R Soc A, 443, 1918, 265-287 (1993) · Zbl 0814.73053
[12] Maruccio, Claudio; De Lorenzis, Laura; Persano, Luana; Pisignano, Dario, Computational homogenization of fibrous piezoelectric materials, Comput Mech, 55, 5, 983-998 (2015) · Zbl 1329.74241
[13] Martínez-Ayuso, Germán; Friswell, Michael I.; Adhikari, Sondipon; Khodaparast, Hamed Haddad; Berger, Harald, Homogenization of porous piezoelectric materials, Int J Solids Struct, 113-114, 218-229 (2017)
[14] Kurbatova, Natalia V.; Nadolin, Dmitry K.; Nasedkin, Andrey V.; Oganesyan, Pavel A.; Soloviev, Arcady N., Finite element approach for composite magneto-piezoelectric materials modeling in ACELAN-COMPOS package, (Advanced structured materials, vol. 81 (2018)), 69-88
[15] Berger, Harald; Kari, Sreedhar; Gabbert, Ulrich; Rodriguez-Ramos, Reinaldo; Guinovart, Raul; Otero, Jose A., An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites, Int J Solids Struct, 42, 21-22, 5692-5714 (2005) · Zbl 1330.74060
[16] Wenbin, Yu; Xin, Liu, SwiftComp (2020), URL https://cdmhub.org/resources/scstandard
[17] DIGIMAT user manual. 5th ed. MSC Software Company; 2014.
[18] Gerasimenko, T. E.; Kurbatova, N. V.; Nadolin, D. K.; Nasedkin, A. V.; Nasedkina, A. A.; Oganesyan, P. A., Homogenization of piezoelectric composites with internal structure and inhomogeneous polarization in ACELAN-COMPOS finite element package, (Advanced structured materials, vol. 109 (2019)), 113-131
[19] Iyer, Sumantu; Venkatesh, T. A., Electromechanical response of porous piezoelectric materials: Effects of porosity connectivity, Appl Phys Lett, 97, 7, Article 072904 pp. (2010)
[20] Iyer, Sumantu; Venkatesh, T. A., Electromechanical response of (3-0, 3-1) particulate, fibrous, and porous piezoelectric composites with anisotropic constituents: A model based on the homogenization method, Int J Solids Struct, 51, 6, 1221-1234 (2014)
[21] Efendiev, Yalchin; Galvis, Juan; Hou, Thomas Y., Generalized multiscale finite element methods (GMsFEM), J Comput Phys, 251, 116-135 (2013), URL http://www.sciencedirect.com/science/article/pii/S0021999113003392 · Zbl 1349.65617
[22] Akkutlu, I. Y.; Efendiev, Yalchin; Vasilyeva, Maria, Multiscale model reduction for shale gas transport in fractured media, Comput Geosci, 1-21 (2015) · Zbl 1391.76714
[23] Chung, Eric T.; Efendiev, Yalchin; Li, Guanglian; Vasilyeva, Maria, Generalized multiscale finite element methods for problems in perforated heterogeneous domains, Appl Anal, 95, 10, 2254-2279 (2016) · Zbl 1457.65189
[24] Brown, Donald L.; Vasilyeva, Maria, A generalized multiscale finite element method for poroelasticity problems I: Linear problems, J Comput Appl Math, 294, 372-388 (2016) · Zbl 1330.74151
[25] Vasilyeva, Maria; Stalnov, Denis, A generalized multiscale finite element method for thermoelasticity problems, (Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 10187 LNCS (2017)), 713-720 · Zbl 1391.74269
[26] Hu, Wen; Gu, Yan; Fan, Chia-Ming, A meshless collocation scheme for inverse heat conduction problem in three-dimensional functionally graded materials, Eng Anal Bound Elem, 114, 1-7 (2020) · Zbl 1464.74373
[27] Chen, S. S.; Li, Q. H.; Liu, Y. H.; Xue, Z. Q., A meshless local natural neighbour interpolation method for analysis of two-dimensional piezoelectric structures, Eng Anal Bound Elem, 37, 2, 273-279 (2013) · Zbl 1351.74079
[28] Kögl, M.; Gaul, L., A boundary element method for transient piezoelectric analysis, Eng Anal Bound Elem, 24, 7-8, 591-598 (2000) · Zbl 1010.74075
[29] Pan, Ernian, A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids, Eng Anal Bound Elem, 23, 1, 67-76 (1999) · Zbl 1062.74639
[30] Wang, Guoqing; Guo, Fenglin, A stochastic boundary element method for piezoelectric problems, Eng Anal Bound Elem, 95, 248-254 (2018) · Zbl 1403.74249
[31] Miara, B.; Rohan, E.; Griso, G.; Avila, A.; Bossavit, A.; Ouchetto, O., Application of multi-scale modelling to some elastic, piezoelectric and electromagnetic composites, Mech Adv Mater Struct, 14, 1, 33-42 (2007)
[32] Lv, Jun; Zhang, Hongwu; Gao, Xiaowei; Huang, Yi, A new multiscale computational method for electromechanically coupled analysis of heterogeneous piezoelectric composites, J Intell Mater Syst Struct, 26, 4, 434-449 (2015)
[33] Uetsuji, Yasutomo; Kimura, Shusuke; Kuramae, Hiroyuki; Tsuchiya, Kazuyoshi; Kamlah, Marc, Multiscale finite element simulations of piezoelectric materials based on two-and three-dimensional electron backscatter diffraction-measured microstructures, J Intell Mater Syst Struct, 23, 5, 563-573 (2012)
[34] Uetsuji, Yasutomo; Horio, Mitsuteru; Tsuchiya, Kazuyoshi, Optimization of crystal microstructure in piezoelectric ceramics by multiscale finite element analysis, Acta Mater, 56, 9, 1991-2002 (2008)
[35] Efendiev, Y.; Hou, T., (Multiscale finite element methods: Theory and applications. Multiscale finite element methods: Theory and applications, Surveys and tutorials in the applied mathematical sciences, vol. 4 (2009), Springer: Springer New York) · Zbl 1163.65080
[36] Parton, Vladimir Zalmanovich; Kudryavtsev, Boris Aleksandrovich, Electromagnetoelasticity: piezoelectrics and electrically conductive solids (1988), Taylor & Francis
[37] Berlincourt, Don A.; Curran, Daniel R.; Jaffe, Hans, Piezoelectric and piezomagnetic materials and their function in transducers, Phys Acoust Princ Methods, 1, Part A, 247 (1964)
[38] Dieulesaint, Eugène; Royer, Daniel, Elastic waves in solids: Applications to signal processing (1980), John Wiley & Sons · Zbl 0960.74003
[39] Parton, V. Z., Applied Mechanics: Soviet Reviews. Vol. 2: Electromagnetoelasticity (1989), Hemisphere Publishing Corporation
[40] Logg, Anders; Mardal, Kent-Andre; Wells, Garth N., Automated solution of differential equations by the finite element method (2012), Springer · Zbl 1247.65105
[41] Geuzaine, C.; Remacle, J.-F., Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat J Numer Methods Engrg, 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[42] Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat, Constraint energy minimizing generalized multiscale finite element method, Comput Methods Appl Mech Engrg, 339, 298-319 (2018) · Zbl 1440.65195
[43] Lee, Jong S., Boundary element method for electroelastic interaction in piezoceramics, Eng Anal Bound Elem, 15, 4, 321-328 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.