Variational approach to regularity of optimal transport maps: general cost functions. (English) Zbl 1496.49025

The paper continues the line of research started with [M. Goldman and F. Otto, Ann. Sci. Éc. Norm. Supér. (4) 53, No. 5, 1209–1233 (2020; Zbl 1465.35263)] and [M. Goldman et al., Commun. Pure Appl. Math. 74, No. 12, 2483–2560 (2021; Zbl 1480.35082)]. The aim is the study of the regularity theory for optimal transport maps with a purely variational approach.
Here the authors deal with general cost functions and Hölder continuous densities, obtaining a slightly more quantitative result than the one in the celebrated paper [G. De Philippis and A. Figalli, Publ. Math., Inst. Hautes Étud. Sci. 121, 81–112 (2015; Zbl 1325.49051)]. Besides the differences in the statement of the main result compared to the one of De Philippis and Figalli, the interest is in the different approach. Indeed, the authors do not rely on the regularity theory for the Monge-Ampère equation and use arguments similar to De Giorgi’s strategy for the \(\varepsilon\)-regularity of minimal surfaces.
The result can be also applied to the study of the optimal transport problem on Riemannian manifolds with cost given by the square of the Riemannian distance.


49Q22 Optimal transportation
35B65 Smoothness and regularity of solutions to PDEs
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
Full Text: DOI arXiv


[1] Almgren Jr., F.J.: Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems with Constraints. Memoirs of the American Mathematical Society, vol. 4(165). American Mathematical Society, Providence, RI (1976). ISBN: 978-0-8218-1865-7 · Zbl 0327.49043
[2] Benamou, J.-D., Brenier, Y.: A numerical method for the optimal time-continuous mass transport problem and related problems. In: Monge Ampére Equation: Applications to Geometry and Optimization (Deerfield Beach, FL, 1997), Contemporary Mathematics, vol. 226, pp. 1-11. American Mathematical Society, Providence, RI (1999) · Zbl 0916.65068
[3] Bombieri, E., Regularity theory for almost minimal currents, Arch. Ration Mech. Anal., 78, 99-130 (1982) · Zbl 0485.49024
[4] Caffarelli, LA, The regularity of mappings with a convex potential, J. Am. Math. Soc., 5, 1, 99-104 (1992) · Zbl 0753.35031
[5] Campanato, S., Proprietà di una famiglia di spazi funzionali, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (Serie 3), 18, 1, 137-160 (1964) · Zbl 0133.06801
[6] Chen, G-Q; Frid, H., Extended divergence-measure fields and the Euler equations for gas dynamics, Commun. Math. Phys., 236, 251-280 (2003) · Zbl 1036.35125
[7] De Philippis, G.; Figalli, A., Partial regularity for optimal transport maps, Publications Mathématiques. Institut de Hautes Études Scientifiques, 121, 81-112 (2015) · Zbl 1325.49051
[8] Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Revised edition. Textbooks in Mathematics. CRC Press, Boca Raton, FL (2015). ISBN: 978-1-4822-4238-6 · Zbl 1310.28001
[9] Figalli, A.: The Monge-Ampère Equation and Its Applications. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2017. ISBN 978-3-03719-170-5 · Zbl 1435.35003
[10] Figalli, A.; Kim, Y-H, Partial regularity of Brenier solutions of the Monge-Ampère equation, Discret. Contin. Dyn. Syst. (Ser. A), 28, 559-565 (2010) · Zbl 1193.35087
[11] Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co., Inc., River Edge, NJ (2003). ISBN: 981-238-043-4 · Zbl 1028.49001
[12] Goldman, M., An \(\varepsilon \)-regularity result for optimal transport maps between continuous densities, Atti della Accademia Nazionale dei Lincei. Rendiconti Lincei. Matematica e Applicazioni, 31, 4, 971-979 (2020) · Zbl 1511.49028
[13] Goldman, M.; Otto, F., A variational proof of partial regularity for optimal transportation maps, Annales Scientifiques de l’École Normale Supérieure. Quatrième Série, 53, 5, 1209-1233 (2020) · Zbl 1465.35263
[14] Goldman, M., Huesmann, M., Otto, F.: Quantitative linearization results for the Monge-Ampère equation. Commun. Pure Appl. Math. (2021). doi:10.1002/cpa.21994
[15] Kim, Y-H; McCann, RJ, Continuity, curvature, and the general covariance of optimal transportation, J. Eur. Math. Soc., 12, 4, 1009-1040 (2010) · Zbl 1191.49046
[16] Loeper, G., On the regularity of solutions of optimal transportation problems, Acta Math., 202, 2, 241-283 (2009) · Zbl 1219.49038
[17] Ma, X-N; Trudinger, NS; Wang, X-J, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., 177, 2, 151-183 (2005) · Zbl 1072.49035
[18] Miura, T., Otto, F.: Sharp boundary \(\epsilon \)-regularity of optimal transport maps. Adv. Math. 381 (2021), Article ID 107603 · Zbl 1459.49032
[19] Prod’homme, M., Ried, T.: Variational approach to partial regularity of optimal transport maps: general cost functions and continuous densities (in Preparation)
[20] Santambrogio, F.: Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs, and Modeling. Progress in Nonlinear Differential Equations and their Applications, vol. 87. Birkhäuser, Cham (2015). ISBN: 978-3-319-20827-5 · Zbl 1401.49002
[21] Schoen, R.; Simon, L., A new proof of the regularity theorem for rectifiable currents which minimize parametric elliptic functionals, Indiana Univ. Math. J., 31, 3, 415-434 (1982) · Zbl 0516.49026
[22] Troianiello, G.M.: Elliptic Differential Equations and Obstacle Problems. The University Series in Mathematics. Plenum Press, New York (1987). ISBN 0-306-42448-7 · Zbl 0655.35002
[23] Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003). ISBN 978-0-8218-3312-4 · Zbl 1106.90001
[24] Villani, C.: Optimal transport: old and new. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009). ISBN 978-3-540-71049-3 · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.