Higher-order particle representation for particle-in-cell simulations. (English) Zbl 07503730

Summary: In this paper we present an alternative approach to the representation of simulation particles for unstructured electrostatic and electromagnetic PIC simulations. In our modified PIC algorithm we represent particles as having a smooth shape function limited by some specified finite radius, \( r_0\). A unique feature of our approach is the representation of this shape by surrounding simulation particles with a set of virtual particles with delta shape, with fixed offsets and weights derived from Gaussian quadrature rules and the value of \(r_0\). As the virtual particles are purely computational, they provide the additional benefit of increasing the arithmetic intensity of traditionally memory bound particle kernels. The modified algorithm is implemented within Sandia National Laboratories’ unstructured EMPIRE-PIC code, for electrostatic and electromagnetic simulations, using periodic boundary conditions. We show results for a representative set of benchmark problems, including electron orbit, a transverse electromagnetic wave propagating through a plasma, numerical heating, and a plasma slab expansion. Good error reduction across all of the chosen problems is achieved as the particles are made progressively smoother, with the optimal particle radius appearing to be problem-dependent.


78Axx General topics in optics and electromagnetic theory
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
78Mxx Basic methods for problems in optics and electromagnetic theory


Full Text: DOI Link


[1] Arber, T. D.; Bennett, K.; Brady, C. S.; Lawrence-Douglas, A.; Ramsay, M. G.; Sircombe, N. J.; Gillies, P.; Evans, R. G.; Schmitz, H.; Bell, A. R.; Ridgers, C. P., Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Control. Fusion, 57, 11, Article 113001 pp. (2015)
[2] Riquelme, M. A.; Quataert, E.; Verscharen, D., Particle-in-cell simulations of continuously driven mirror and ion cyclotron instabilities in high beta astrophysical and heliospheric plasmas, Astrophys. J., 800, 1, 27 (2015)
[3] Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A. B.; Vasilets, V. N.; Fridman, A., Applied plasma medicine, Plasma Process. Polym., 5, 6, 503-533 (2008)
[4] Birdsall, C. K.; Langdon, A. B., Plasma Physics via Computer Simulation, Plasma Physics Series (1991), Institute of Physics Publishing: Institute of Physics Publishing Bristol, UK
[5] Dawson, J. M., Particle simulation of plasmas, Rev. Mod. Phys., 55, 403-447 (1983)
[6] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., 14, 3, 302-307 (1966) · Zbl 1155.78304
[7] Langdon, A. B.; Birdsall, C. K., Theory of plasma simulation using finite-size particles, Phys. Fluids, 13, 8, 2115-2122 (1970)
[8] Fonseca, R. A.; Silva, L. O.; Tsung, F. S.; Decyk, V. K.; Lu, W.; Ren, C.; Mori, W. B.; Deng, S.; Lee, S.; Katsouleas, T.; Adam, J. C., OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators, (Sloot, P. M.A.; Hoekstra, A. G.; Tan, C. J.K.; Dongarra, J. J., Computational Science ICCS 2002 (2002), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg) · Zbl 1053.81100
[9] Germaschewski, K.; Fox, W.; Abbott, S.; Ahmadi, N.; Maynard, K.; Wang, L.; Ruhl, H.; Bhattacharjee, A., The plasma simulation code: a modern particle-in-cell code with patch-based load-balancing, J. Comput. Phys., 318, 305-326 (2016) · Zbl 1349.76917
[10] Bowers, K. J.; Albright, B. J.; Yin, L.; Bergen, B.; Kwan, T. J.T., Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation, Phys. Plasmas, 15, 5, Article 055703 pp. (2008)
[11] Bowers, K. J.; Albright, B. J.; Bergen, B.; Yin, L.; Barker, K. J.; Kerbyson, D. J., 0.374 PFLOP/s trillion-particle kinetic modeling of laser plasma interaction on roadrunner, (Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC’08 (2008), IEEE Press: IEEE Press Piscataway, NJ, USA), Article 63 pp.
[12] Wang, B.; Ethier, S.; Tang, W.; Williams, T.; Ibrahim, K. Z.; Madduri, K.; Williams, S.; Oliker, L., Kinetic turbulence simulations at extreme scale on leadership-class systems, (Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC’13 (2013)), 1-12
[13] Tang, W.; Wang, B.; Ethier, S.; Kwasniewski, G.; Hoefler, T.; Ibrahim, K. Z.; Madduri, K.; Williams, S.; Oliker, L.; Rosales-Fernandez, C.; Williams, T., Extreme scale plasma turbulence simulations on top supercomputers worldwide, (Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC’16 (2016)), 502-513
[14] Wang, E.; Wu, S.; Zhang, Q.; Liu, J.; Zhang, W.; Lin, Z.; Lu, Y.; Du, Y.; Zhu, X., The gyrokinetic particle simulation of fusion plasmas on Tianhe-2 supercomputer, (2016 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems. 2016 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA (2016)), 25-32
[15] Dey, S.; Mittra, R., A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects, IEEE Microw. Guided Wave Lett., 7, 9, 273-275 (1997)
[16] Zagorodnov, I.; Schuhmann, R.; Weiland, T., Conformal FDTD-methods to avoid time step reduction with and without cell enlargement, J. Comput. Phys., 225, 2, 1493-1507 (2007) · Zbl 1135.78015
[17] Yang, G.; Causon, D. M.; Ingram, D. M.; Saunders, R.; Battent, P., A Cartesian cut cell method for compressible flows Part A: static body problems, Aeronaut. J. (1968), 101, 1002, 47-56 (1997)
[18] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 3, 484-512 (1984) · Zbl 0536.65071
[19] Vay, J.-L.; Colella, P.; Kwan, J. W.; McCorquodale, P.; Serafini, D. B.; Friedman, A.; Grote, D. P.; Westenskow, G.; Adam, J.-C.; Héron, A.; Haber, I., Application of adaptive mesh refinement to particle-in-cell simulations of plasmas and beams, Phys. Plasmas, 11, 5, 2928-2934 (2004)
[20] Vay, J.-L.; Almgren, A.; Bell, J.; Ge, L.; Grote, D.; Hogan, M.; Kononenko, O.; Lehe, R.; Myers, A.; Ng, C., Warp-X: a new exascale computing platform for beam-plasma simulations, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., 909, 476-479 (2018)
[21] Marchand, R., PTetra, a tool to simulate low orbit satellite-plasma interaction, IEEE Trans. Plasma Sci., 40, 2, 217-229 (2012)
[22] Roussel, J.; Rogier, F.; Dufour, G.; Mateo-Velez, J.; Forest, J.; Hilgers, A.; Rodgers, D.; Girard, L.; Payan, D., SPIS open-source code: methods, capabilities, achievements, and prospects, IEEE Trans. Plasma Sci., 36, 5, 2360-2368 (2008)
[23] Birdsall, C. K.; Fuss, D., Clouds-in-clouds, clouds-in-cells physics for many-body plasma simulation, J. Comput. Phys., 3, 494-511 (1969)
[24] Jacobs, G.; Hesthaven, J., High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids, J. Comput. Phys., 214, 1, 96-121 (2006) · Zbl 1137.76461
[25] Hesthaven, J.; Warburton, T., Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations, J. Comput. Phys., 181, 1, 186-221 (2002) · Zbl 1014.78016
[26] Edwards, E.; Bridson, R., A high-order accurate particle-in-cell method, Int. J. Numer. Methods Eng., 90, 9, 1073-1088 (2012) · Zbl 1242.76268
[27] Stindl, T.; Neudorfer, J.; Stock, A.; Auweter-Kurtz, M.; Munz, C.-D.; Roller, S.; Schneider, R., Comparison of coupling techniques in a high-order discontinuous Galerkin-based particle-in-cell solver, J. Phys. D, Appl. Phys., 44, 19, Article 194004 pp. (2011)
[28] Pinto, M. C.; Jund, S.; Salmon, S.; Sonnendrücker, E., Charge-conserving FEM-PIC schemes on general grids, C. R., Méc., 342, 10-11, 570-582 (2014)
[29] Brown, D. A.S.; Wright, S. A.; Jarvis, S. A., Performance of a second order electrostatic particle-in-cell algorithm on modern many-core architectures, Electron. Notes Theor. Comput. Sci., 340, 67-84 (2018)
[30] Squire, J.; Qin, H.; Tang, W. M., Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme, Phys. Plasmas, 19, 8, Article 084501 pp. (2012)
[31] Moon, H.; Teixeira, F. L.; Omelchenko, Y. A., Exact charge-conserving scatter-gather algorithm for particle-in-cell simulations on unstructured grids: a geometric perspective, Comput. Phys. Commun., 194, 43-53 (2015) · Zbl 1344.65096
[32] Klimontovich, Y. L., The Statistical Theory of Non-Equilibrium Processes in a Plasma, International Series of Monographs in Natural Philosophy, vol. 9 (2013), Elsevier
[33] Dupree, T. H., Kinetic theory of plasma and the electromagnetic field, Phys. Fluids (1958-1988), 6, 12, 1714-1729 (1963) · Zbl 0127.22503
[34] Boris, J., Relativistic plasma simulation: optimization of a hybrid code, (Proceedings of the Fourth Conference on Numerical Simulation of Plasmas (1971), Naval Research Laboratory: Naval Research Laboratory Washington, D.C.), 3-68
[35] Jin, J., The Finite Element Method in Electromagnetics (2014), Wiley-IEEE Press · Zbl 1419.78001
[36] Nédélec, J.-C., Mixed finite elements in \(\mathbb{R}^3\), Numer. Math., 35, 3, 315-341 (1980) · Zbl 0419.65069
[37] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods, vol. 15 (2012), Springer Science & Business Media
[38] Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R., A comprehensive comparison of relativistic particle integrators, Astrophys. J. Suppl. Ser., 235, 1, 21 (2018)
[39] Villasenor, J.; Buneman, O., Rigorous charge conservation for local electromagnetic field solvers, Comput. Phys. Commun., 69, 2, 306-316 (1992)
[40] Chen, F. F., Introduction to Plasma Physics and Controlled Fusion (2016), Springer
[41] Bittencourt, J. A., Fundamentals of Plasma Physics (2004), Springer · Zbl 1084.76001
[42] Langdon, A., Effects of the spatial grid in simulation plasmas, J. Comput. Phys., 6, 2, 247-267 (1970)
[43] Hockney, R.; Goel, S.; Eastwood, J., Quiet high-resolution computer models of a plasma, J. Comput. Phys., 14, 2, 148-158 (1974)
[44] Hockney, R., Measurements of collision and heating times in a two-dimensional thermal computer plasma, J. Comput. Phys., 8, 1, 19-44 (1971)
[45] Shalaby, M.; Broderick, A. E.; Chang, P.; Pfrommer, C.; Lamberts, A.; Puchwein, E., SHARP: a spatially higher-order, relativistic particle-in-cell code, Astrophys. J., 841, 1, 52 (2017)
[46] Rambo, P., Numerical heating in hybrid plasma simulations, J. Comput. Phys., 133, 1, 173-180 (1997) · Zbl 0883.76068
[47] Cohen, B. I.; Langdon, A. B.; Hewett, D. W.; Procassini, R. J., Performance and optimization of direct implicit particle simulation, J. Comput. Phys., 81, 1, 151-168 (1989) · Zbl 0664.65111
[48] Pointon, T., Second-order, exact charge conservation for electromagnetic particle-in-cell simulation in complex geometry, Comput. Phys. Commun., 179, 8, 535-544 (2008) · Zbl 1197.82015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.