Huillet, Thierry; Möhle, Martin Asymptotic genealogies for a class of generalized Wright-Fisher models. (English) Zbl 1486.60115 Mod. Stoch., Theory Appl. 9, No. 1, 17-43 (2022). Summary: A class of Cannings models is studied, with population size \(N\) having a mixed multinomial offspring distribution with random success probabilities \({W_1},\dots ,{W_N}\) induced by independent and identically distributed positive random variables \({X_1},{X_2},\dots\) via \({W_i}:={X_i}/{S_N}\), \(i\in \{1,\dots ,N\}\), where \({S_N}:={X_1}+\cdots +{X_N}\). The ancestral lineages are hence based on a sampling with replacement strategy from a random partition of the unit interval into \(N\) subintervals of lengths \({W_1},\dots ,{W_N}\). Convergence results for the genealogy of these Cannings models are provided under assumptions that the tail distribution of \({X_1}\) is regularly varying. In the limit several coalescent processes with multiple and simultaneous multiple collisions occur. The results extend those obtained by T. E. Huillet [J. Math. Biol. 68, No. 3, 727–761 (2014; Zbl 1295.60083)] for the case when \({X_1}\) is Pareto distributed and complement those obtained by J. Schweinsberg [Stochastic Processes Appl. 106, No. 1, 107–139 (2003; Zbl 1075.60571)] for models where sampling is performed without replacement from a supercritical branching process. Cited in 2 Documents MSC: 60J90 Coalescent processes 92D15 Problems related to evolution 60J80 Branching processes (Galton-Watson, birth-and-death, etc.) Keywords:Cannings model; exchangeable coalescent; regularly varying function; simultaneous multiple collisions; weak convergence Citations:Zbl 1295.60083; Zbl 1075.60571 PDFBibTeX XMLCite \textit{T. Huillet} and \textit{M. Möhle}, Mod. Stoch., Theory Appl. 9, No. 1, 17--43 (2022; Zbl 1486.60115) Full Text: DOI arXiv References: [1] Athreya, K.B.: Rates of decay for the survival probability of a mutant gene. J. Math. Biol.30(6), 577-581 (1992). MR1173109 · Zbl 0748.92006 [2] Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987). MR0898871 · Zbl 0617.26001 [3] Bingham, N.H., Doney, R.A.: Asymptotic properties of supercritical branching processes. I. The Galton-Watson process. Adv. Appl. Probab.6(4), 711-731 (1974). MR0362525 · Zbl 0297.60044 [4] Boenkost, F., González Casanova, A., Pokalyuk, C., Wakolbinger, A.: Haldane’s formula in Cannings models: the case of moderately weak selection. Electron. J. Probab.26 (Paper no. 4), 1-36 (2021). MR4216517 · Zbl 1469.60226 [5] Boenkost, F., González Casanova, A., Pokalyuk, C., Wakolbinger, A.: Haldane’s formula in Cannings models: the case of moderately strong selection. J. Math. Biol.83(6-7), Article number 70 (2021). 31 pages.MR4348421 · Zbl 1479.60150 [6] Cannings, C.: The latent roots of certain Markov chains arising in genetics: a new approach. I. Haploid models. Adv. Appl. Probab.6(2), 260-290 (1974). MR0343949 · Zbl 0284.60064 [7] Cannings, C.: The latent roots of certain Markov chains arising in genetics: a new approach. II. Further haploid models. Adv. Appl. Probab.7(2), 264-282 (1975). MR0371430 · Zbl 0339.60067 [8] Cordero, F., González Casanova, A., Schweinsberg, J., Wilke-Berenguer, M.: Λ-coalescents arising in populations with dormancy (2020). arXiv preprint · Zbl 1485.92083 [9] Cortines, A.: The genealogy of a solvable population model under selection with dynamics related to directed polymers. Bernoulli22(4), 2209-2236 (2016). MR3498028 · Zbl 1344.60092 [10] Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer (2010). MR2571413 · Zbl 1177.60035 [11] Eldon, B., Wakeley, J.: Coalescent processes when the distribution of offspring number among individuals is highly skewed. Genetics172(4), 2621-2633 (2006) [12] Feller, W.: An Introduction to Probability Theory and Its Applications. Vol. II, 2nd edn. Wiley, New York (1971). MR0270403 · Zbl 0219.60003 [13] Griffiths, R.C., Spanò, D.: Orthogonal polynomial kernels and canonical correlations for Dirichlet measures. Bernoulli19(2), 548-598 (2013). MR3037164 · Zbl 1281.60015 [14] Haldane, J.B.S.: A mathematical theory of neutral and artificial selection, Part V. Selection and mutation. Proc. Camb. Philol. Soc.23(7), 838-844 (1927) · JFM 53.0516.05 [15] Huillet, T.: Pareto genealogies arising from a Poisson branching evolution model with selection. J. Math. Biol.68(3), 727-761 (2014). MR3152761 · Zbl 1295.60083 [16] Huillet, T., Möhle, M.: Population genetics models with skewed fertilities: a forward and backward analysis. Stoch. Models27(3), 521-554 (2011). MR2827443 · Zbl 1367.92074 [17] Huillet, T., Möhle, M.: Correction on ‘Population genetics models with skewed fertilities: a forward and backward analysis’. Stoch. Models28(3), 527-532 (2012). MR2959453 · Zbl 1367.92075 [18] Huillet, T., Möhle, M.: On the extended Moran model and its relation to coalescents with multiple collisions. Theor. Popul. Biol.87, 5-14 (2013) · Zbl 1296.92207 [19] Huillet, T., Möhle, M.: Asymptotics of symmetric compound Poisson population models. Comb. Probab. Comput.24(1), 216-253 (2015). MR3318045 · Zbl 1371.60173 [20] Karamata, J.: Neuer Beweis und Verallgemeinerung der Tauberschen Sätze, welche die Laplacesche und Stieltjessche Transformation betreffen. J. Reine Angew. Math.164, 27-39 (1931). MR1581248 · Zbl 0001.27302 [21] Karamata, J.: Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze. Math. Z.33(1), 294-299 (1931). MR1545213 · JFM 57.0261.05 [22] Karamata, J.: Some theorems concerning slowly varying functions (1962). Technical Report #369, The Univ. of Wisconsin [23] Karlin, S., McGregor, J.: Direct product branching processes and related Markov chains. Proc. Natl. Acad. Sci. USA51, 598-602 (1964). MR0163362 · Zbl 0129.30504 [24] Karlin, S., McGregor, J.: Direct product branching processes and related induced Markov chains. I. Calculations of rates of approach to homozygosity. In: Proc. Internat. Res. Sem., Statist. Lab., Univ. California, Berkeley, Calif., 1963, pp. 111-145. Springer (1965). MR0217892 · Zbl 0294.60064 [25] Kingman, J.F.C.: The coalescent. Stoch. Process. Appl.13(3), 235-248 (1982). MR0671034 · Zbl 0491.60076 [26] Kingman, J.F.C.: Exchangeability and the evolution of large populations. In: Exchangeability in Probability and Statistics (Rome, 1981), pp. 97-112. North-Holland, Amsterdam-New York (1982). MR675968 · Zbl 0494.92011 [27] Kingman, J.F.C.: On the genealogy of large populations. J. Appl. Probab.Special Vol. 19A, 27-43 (1982). Essays in statistical science. MR633178 · Zbl 0516.92011 [28] Kozubowski, T.J., Podgórski, K.: A generalized Sibuya distribution. Ann. Inst. Stat. Math.70(4), 855-887 (2018). MR3830290 · Zbl 1398.60028 [29] Möhle, M.: Total variation distances and rates of convergence for ancestral coalescent processes in exchangeable population models. Adv. Appl. Probab.32(4), 983-993 (2000). MR1808909 · Zbl 1002.92015 [30] Möhle, M.: On sampling distributions for coalescent processes with simultaneous multiple collisions. Bernoulli12(1), 35-53 (2006). MR2202319 · Zbl 1099.92052 [31] Möhle, M.: Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent. Stoch. Process. Appl.120(11), 2159-2173 (2010). MR2684740 · Zbl 1214.60037 [32] Möhle, M., Sagitov, S.: A classification of coalescent processes for haploid exchangeable population models. Ann. Probab.29(4), 1547-1562 (2001). MR1880231 · Zbl 1013.92029 [33] Pitman, J.: Coalescents with multiple collisions. Ann. Probab.27(4), 1870-1902 (1999). MR1742892 · Zbl 0963.60079 [34] Sagitov, S.: The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab.36(4), 1116-1125 (1999). MR1742154 · Zbl 0962.92026 [35] Schweinsberg, J.: Coalescents with simultaneous multiple collisions. Electron. J. Probab.5 (Paper no. 12), 1-50 (2000). MR1781024 · Zbl 0959.60065 [36] Schweinsberg, J.: A necessary and sufficient condition for the Λ-coalescent to come down from infinity. Electron. Commun. Probab.5, 1-11 (2000). MR1736720 · Zbl 0953.60072 [37] Schweinsberg, J.: Coalescent processes obtained from supercritical Galton-Watson processes. Stoch. Process. Appl.106(1), 107-139 (2003). MR1983046 · Zbl 1075.60571 [38] Yule, G.U.: A mathematical theory of evolution based on the conclusions of Dr. J.C. Willis, F.R.S.Philos. Trans. R. Soc. Lond. Ser. B213, 21-87 (1925) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.