×

Topological equisingularity for isolated complete intersection singularities. (English) Zbl 0751.14005

Let \(X,x\) be a germ of an analytic variety (over the complex numbers) which is a complete intersection isolated singularity. The author associates to \(X,x\) a sequence \(\mu^*=(\mu_ 0,\mu_ 1,\ldots)\) of numerical invariants by taking \(\mu_ i\) to be the minimal value of the Milnor numbers \(\mu(X_ i,x_ i)\) for all deformations \((X_ i,x_ i)\to(S_ i,s_ i)\) of \(X,x\) with \(\dim S_ i=i\). One has \(\mu_ 0=\mu(X,x)\) and \(\mu_ i=0\) if \(i\) is bigger than the embedding codimension of \(X,x\). On the other hand the author defines the topological type of \(X,x\) as the class of homeomorphism of any sequence of germs \((X,x)=(X_ 0,x)\subset(X_ 1,x)\subset\cdots\subset(X_ k,x)\) where \(k\) is the embedding codimension of \(X,x\), for each \(i\), \(\mu(X_ i,x)=\mu_ i(X,x)\) and then the homeomorphism class does not depend on the \(X_ i\).
The main result in the paper says that a \(\mu^*\)-constant family of isolated complete intersection singularities of dimension different from two is topologically equisingular. A sufficient condition for the members of the family to have isomorphic monodromy fibrations is also given.

MSC:

14E15 Global theory and resolution of singularities (algebro-geometric aspects)
14B05 Singularities in algebraic geometry
32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)
14M10 Complete intersections
32B10 Germs of analytic sets, local parametrization

References:

[1] Buchweitz, R. -O and Greuel, G.-M. : The Milnor number and deformations of complex curve singularities , Invent. Math. 58 (1980). · Zbl 0458.32014 · doi:10.1007/BF01390254
[2] Fulton, W. : Intersection theory , Erg. Math. 3 Folge, Band 2, Springer-Verlag, 1984. · Zbl 0541.14005
[3] Greuel, G. - M.: Constant Milnor number implies constant multiplicity for quasi-homogeneous singularities , Manusc. Math. 56 (1986), 159-166. · Zbl 0594.32021 · doi:10.1007/BF01172153
[4] Hamm, H. : Lokale topologische Eigenschaften komplexer Raume , Math. Ann. 191 (1971), 235-252. · Zbl 0214.22801 · doi:10.1007/BF01578709
[5] Lê Dung Tráng : Travaux en cours 36, 1988.
[6] Lê Dung Tráng : Calculation of Milnor number of isolated singularity of complete intersection , Funct. Anal. Appl. 8 (1974), 127-131. · Zbl 0351.32007 · doi:10.1007/BF01078597
[7] Lê Dung Tráng And Ramanujam, C.P. : The invariance of Milnor number implies the invariance of topological type , Amer. J. Math. 98(1) (1976), 67-78. · Zbl 0351.32009 · doi:10.2307/2373614
[8] Looijenga, E.J.N. : Isolated singular points on complete intersections , London Math. Soc. Lect. Notes 77, Cambridge University Press, 1984. · Zbl 0552.14002
[9] Massey, D.B. : The Le-Ramanujam problem for hypersurfaces with one dimensional singular sets , Math. Ann. 288 (1988) 33-49. · Zbl 0657.32005 · doi:10.1007/BF01457011
[10] Massey, D.B. : The Lê varieties , 1 Invent. Math. 99 (1990), 357-376. · Zbl 0712.32020 · doi:10.1007/BF01234423
[11] Parameswaran, A.J. : Monodromy fibration of an isolated complete intersection singularity , to appear in Proc. Indo-French conference on ”Geometry”, Tata Institute, Bombay, 1989. · Zbl 0842.32025
[12] Smale, S. : Structure of manifolds , Amer. J. Math. 84 (1962). · Zbl 0109.41103 · doi:10.2307/2372978
[13] Szczepanski, S. : Criteria for topological equivalence and a Lê-Ramanujam theorem for three complex variables , Duke Math. J. 58(2) (1989). · Zbl 0676.58012 · doi:10.1215/S0012-7094-89-05823-7
[14] Tessier, B. : Cycles evanescents, sections planes et conditions de Whitney , Asterisque 7 and 8 (1973). · Zbl 0295.14003
[15] Vannier, J.P. : Families a un parametre de fonctions analytiques a Lieu singulier de dimension un , C.R. Acad. Sci. Paris, Ser. 1, Vol. 303 (1986), 367-370. · Zbl 0596.32014
[16] Varchenko, A.N. : A lower bound for the codimension of the stratum \mu -constant in terms of the mixed Hodge structure , Vest. Univ. Math. 37 (1982), 29-31. · Zbl 0511.32004
[17] Zariski, O. : Open questions in the theory of singularities , Bull. A.M.S. 77 (1971), 481-491. · Zbl 0236.14002 · doi:10.1090/S0002-9904-1971-12729-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.