Selmer group estimates arising form the existence of canonical subgroups. (English) Zbl 0751.14030

Author’s abstract: Generalizing the work of Lubin in the one-dimensional case, conditions are found for the existence of canonical subgroups of finite height commutative formal groups of arbitrary dimension over local rings of mixed characteristic \((0,p)\). These are \(p\)-torsion subgroups which are optimally close to being kernels of Frobenius homomorphisms. The \(\mathbb{F}_ p\) ranks of the first flat cohomology groups of these canonical subgroups are found. These results are applied to the estimation of the \(\mathbb{F}_ p\) rank of the Selmer group of an Abelian variety over a global number field of characteristic zero, and the \(\lim\sup\) of these ranks as the Abelian variety varies in an isogeny class.


14L05 Formal groups, \(p\)-divisible groups
14K05 Algebraic theory of abelian varieties
Full Text: Numdam EuDML


[1] Z. Borevich and I. Shafarevič , Number Theory , Academic Press, New York (1966). · Zbl 0145.04902
[2] E.J. Ditters , Higher Hasse-Witt matrices, Journées de Géometrie Algébrique de Rennes 1 (1978), Astérisque, Soc. Math. de Fr., 63 (1979) 67-71. · Zbl 0426.14021
[3] A. Grothendieck , Technique de descente et theoremes d’existence en géometrie algébrique , Séminaire Bourbaki 190 (1959). · Zbl 0229.14007
[4] M. Hazewinkel , Formal Groups and Applications . Academic Press: New York (1978). · Zbl 0454.14020
[5] J. Lubin , The canonicity of a cyclic subgroup of an elliptic curve , Journées de Géometrie Algébrique de Rennes 1 (1978), Astérique, Soc. Math. de Fr. 63 (1979) 165-167. · Zbl 0426.14020
[6] J. Lubin , Canonical subgroups of formal groups . Trans. Am. Math. Soc. 251 (1979) 103-127. · Zbl 0431.14014
[7] J. Lubin and J. Tate , Formal moduli for one parameter formal Lie groups , Bull. Soc. Math. de Fr. 85 (1967) 49-60. · Zbl 0156.04105
[8] B. Mazur , Local flat duality , Amer. J. of Math. 92 (1970) 201-223. · Zbl 0199.24501
[9] B. Mazur and L. Roberts , Local Euler characteristic. Inventiones Math. 9 (1970) 201-234. · Zbl 0191.19202
[10] L. Roberts , The flat cohomology of group schemes, Ph.D. Thesis , Harvard Univ. (1968).
[11] L. Roberts , The flat cohomology of group schemes of rank p , Am. J. Math. 95 (1973) 688-702. · Zbl 0281.14020
[12] J. Tate , p-divisible groups , Proc. of a Conf. on Local Fields, T.A. Springer, Springer-Verlag, Berlin and New York (1979) pp. 158-183. · Zbl 0157.27601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.