Natarajan, P. N. Criterion for regular matrices in non-Archimedean fields. (English) Zbl 0751.40003 J. Ramanujan Math. Soc. 6, No. 1-2, 185-195 (1991). In this paper \(K\) denotes a complete, non-trivially valued, non- archimedean field and infinite matrices and sequences have entries in A. F. Monna [Nederl. Akad. Wet. Proc. Ser. A 66, 121–131 (1963; Zbl 0121.32703)] and J. B. Roberts [Proc. Am. Math. Soc. 8, 541–543 (1957; Zbl 0078.05003)] proved the criteria for convergence preservation and regularity of infinite matrices in \(K\) using non-archimedean functional analysis in the form of the analogue to the Banach-Steinhaus theorem. The purpose of the present paper is to prove these criteria for infinite matrices in \(K\) without recourse to non-archimedean functional analytic tools, using a technique of Schur, later fortified by V. Ganapathy Iyer in the case of the fields \(\mathbb{R}\) on \(\mathbb{C}\). Reviewer: P.N.Natarajan Cited in 4 Documents MSC: 40C05 Matrix methods for summability 46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis Keywords:non-Archimedean functional analysis; Banach-Steinhaus theorem; matrix methods Citations:Zbl 0121.32703; Zbl 0078.05003 PDF BibTeX XML Cite \textit{P. N. Natarajan}, J. Ramanujan Math. Soc. 6, No. 1--2, 185--195 (1991; Zbl 0751.40003) OpenURL