×

On characterizing the set of possible effective tensors of composites: The variational method and the translation method. (English) Zbl 0751.73041

This comprehensive paper is a sort of synthesis of various aspects of bounding techniques for conduction in composites and the elastic properties of composites. Bounds for dynamic problems in the quasi-static limit are also investigated, thus including the viscoelastic behaviour. Particularly, much attention is devoted to the Hashin-Shtrikman bounds and the translation method of Tartar and Murat and Lurie and Cherkaev. Relations between different techniques are carefully discussed. The dual approach is often exploited in finding bounds. Having formulated the polarization problem, it is shown that for layered materials this problem can be easily solved. The paper is written in a rather abstract way and will certainly appeal to mathematically minded researchers working on the mechanics of composites.

MSC:

74E30 Composite and mixture properties
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
74E05 Inhomogeneity in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] , and , Optimal control theory and structural design, in New Directions in Optimum Structural Design, et al., eds., Wiley, 1984, p. 211.
[2] Avellaneda, SIAM J. Appl. Math 47 pp 1216– (1987)
[3] Avellaneda, Comptes Rendus Acad. Sci. Paris Serie I 355 (1988)
[4] Avellaneda, J. Appl. Phys. 63 pp 4989– (1988)
[5] Avellaneda, SIAM J. Appl. Math 49 pp 824– (1989)
[6] Backus, J. Geophys. Res. 67 pp 4427– (1962)
[7] Baker, J. Math. Phys. 10 pp 814– (1969)
[8] Ball, J. Funct. Anal. 41 pp 135– (1981)
[9] Ball, Arch. Rat. Mech. Anal. 100 pp 13– (1987)
[10] Batchelor, Ann. Rev. Fluid. Mech. 6 pp 227– (1974)
[11] van Beek, Progress in Dielectrics 7 pp 69– (1967)
[12] Statistical Continuum Theories, Wiley, New York, 1968. · Zbl 0162.58902
[13] Bergman, Phys. Rep. C43 pp 377– (1978)
[14] Bergman, Ann. Phys. 138 pp 78– (1982)
[15] Elastizität Konstanten von Kristallaggregaten, Ph.D. Thesis, Utrecht, 1930, pp. 19–38.
[16] Cabib, J. Opt. Theory Appl. 56 pp 39– (1988)
[17] Mechanics of Composite Materials, Wiley-Interscience, New York, 1979.
[18] Common, J. Math. Phys. 9 pp 32– (1967)
[19] and , The local character of G-closure, in preparation.
[20] Dell’Antonio, Ann. Inst. Henri Poincaré 44 pp 1– (1986)
[21] Francfort, J. Stat. Phys. 46 pp 161– (1987)
[22] Francfort, Archives Rat. Mech. and Analysis 94 pp 307– (1986)
[23] and , Design of composite plates of extremal rigidity, preprint, Ioffe Physico Technical Institute, 1984.
[24] private communication, Leningrad 1986.
[25] and , Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983, pp. 83–85. · Zbl 0361.35003
[26] Golden, J. Stat. Phys. 40 pp 655– (1985)
[27] Golden, J. Mech. Phys. Solids 34 pp 333– (1986)
[28] Gragg, Numer. Math. 11 pp 370– (1968)
[29] Hashin, J. Appl. Mech. Trans. ASME 29 pp 143– (1962) · Zbl 0102.17401
[30] Hashin, J. Appl. Mech. Trans. ASME 105 pp 481– (1983)
[31] Hashin, J. Appl. Phys. 33 pp 3125– (1962)
[32] Hashin, J. Mech. Phys. Solids 11 pp 127– (1963)
[33] New derivations of some elastic extremum principles, in Progress in Applied Mechanics–Prager Anniversary Volume, Macmillan, New York, 1963, p. 99.
[34] and , Bounds for effective conductivity of random media, in Macroscopic Properties of Disordered Media, and , eds., Springer, Berlin, Heidelberg, New York, 1982, p. 111.
[35] Kohn, Arch. Rat. Mech. Anal. 102 pp 331– (1988)
[36] and , On bounding the effective conductivity of anisotropic composites, in Homogenization and Effective Moduli of Materials and Media, , and , eds., Springer-Verlag, New York, 1986, pp. 97–125.
[37] Kohn, Comm. Pure Appl. Math. 39 pp 113– (1986)
[38] and , Electrodynamics of continuous media, Pergamon Press, 1960. pp. 96–98.
[39] Electrical conductivity in inhomogeneous media, in Electrical Transport and Optical Properties of Inhomogeneous Media, and , eds., Am. Inst. Phys., New York, 1978, pp. 2–43.
[40] Lipton, Proc. Roy. Soc. Edinburgh 110A pp 45– (1988) · Zbl 0683.73010
[41] On the non-selfadjoint problems of optimal control in coefficients of elliptic equations, Ioffe Physico Technical Institute, Leningrad, 1987, preprint.
[42] Lurie, Proc. Roy. Soc. Edinburgh 99A pp 71– (1984) · Zbl 0564.73079
[43] Lurie, J. Opt. Th. Appl. 46 pp 571– (1985)
[44] Lurie, Proc. Roy. Soc. Edinburgh 104A pp 21– (1986) · Zbl 0623.73011
[45] and , private communication, Leningrad 1986.
[46] Lurie, Uspekhi Mekaniki (Advances in Mechanics) No. 2 (1987)
[47] McPhedran, Appl. Phys. A26 pp 207– (1981)
[48] Quantum Mechanics, Vol. 2, North-Holland, Amsterdam, 1964, pp. 536–581.
[49] Milton, Appl. Phys. Lett. 37 pp 300– (1980)
[50] Milton, J. Appl. Phys. 52 pp 5286– (1981)
[51] see also Theoretical studies of the transport properties of inhomogeneous media, unpublished report TP/79/1: University of Sydney, 1979.
[52] Milton, J. Appl. Phys. 52 pp 5294– (1981)
[53] Milton, Appl, Phys. A26 pp 125– (1981)
[54] Modeling the properties of composites by laminates, in Homogenization and Effective Moduli of Materials and Media, , , and , eds., Springer-Verlag, New York, 1986, pp. 150–174.
[55] Milton, Commun. Math. Phys. 111 pp 281– (1987)
[56] Milton, J. Mech. Phys. Solids 36 pp 597– (1988)
[57] Milton, Proc. Roy. Soc. London A380 pp 305– (1982) · Zbl 0497.73016
[58] Murat, Ann. Sc. Norm. Sup. Pisa 8 pp 69– (1981)
[59] and , Calcul des variations et homogénéisation, in Les Méthodes d’Homogénéisation: Théorie et Applications en Physique, Coll. de la Dir. des Etudes et Recherches d’Electricité de France, Eyrolles, Paris, 1985, p. 319.
[60] Prager, J. Chem. Phys. 50 pp 4305– (1969)
[61] Schulgasser, J. Appl. Phys. 47 pp 1880– (1976)
[62] Schulgasser, J. Phys. C10 pp 407– (1977)
[63] Estimations fines des coefficients homogénéisés, in Ennio DeGiorgi’s Colloquium, ed., Research Notes in Mathematics 125, Pitman Press, London 1985, p. 168.
[64] Torquato, Rev. Chem. Eng. 4 pp 151– (1987)
[65] Walpole, J. Mech. Phys. Solids 14 pp 151– (1966)
[66] Watt, Rev. Geophys. and Space Phys. 14 pp 541– (1976)
[67] Willis, J. Mech. Phys. Solids 25 pp 185– (1977)
[68] Variational and related methods for the overall properties of composite materials, in Advances in Applied Mechanics 21, ed., Academic Press, New York, 1981, pp. 2–78.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.