×

FROSch preconditioners for land ice simulations of Greenland and Antarctica. (English) Zbl 07511034

MSC:

65F08 Preconditioners for iterative methods
65Y05 Parallel numerical computation
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] A. Aschwanden, E. Bueler, C. Khroulev, and H. Blatter, An enthalpy formulation for glaciers and ice sheets, J. Glaciology, 58 (2012), pp. 441-457.
[2] E. Bavier, M. Hoemmen, S. Rajamanickam, and H. Thornquist, Amesos2 and Belos: Direct and iterative solvers for large sparse linear systems, Sci. Program., 20 (2012), pp. 241-255.
[3] L. Berger-Vergiat, C. A. Glusa, J. J. Hu, M. Mayr, A. Prokopenko, C. M. Siefert, R. S. Tuminaro, and T. A. Wiesner, MueLu Multigrid Framework. http://trilinos.org/packages/muelu, 2019.
[4] L. Berger-Vergiat, C. A. Glusa, J. J. Hu, M. Mayr, A. Prokopenko, C. M. Siefert, R. S. Tuminaro, and T. A. Wiesner, MueLu User’s Guide, Tech. Report SAND2019-0537, Sandia National Laboratories, Albuquerque, NM, 2019.
[5] D. J. Brinkerhoff and J. V. Johnson, Data assimilation and prognostic whole ice sheet modelling with the variationally derived, higher order, open source, and fully parallel ice sheet model VarGlaS, The Cryosphere, 7 (2013), pp. 1161-1184.
[6] J. Brown, B. Smith, and A. Ahmadia, Achieving textbook multigrid efficiency for hydrostatic ice sheet flow, SIAM J. Sci. Comput., 35 (2013), pp. B359-B375, https://doi.org/10.1137/110834512. · Zbl 1266.86001
[7] M. Buck, O. Iliev, and H. Andrä, Multiscale finite elements for linear elasticity: Oscillatory boundary conditions, in Domain Decomposition Methods in Science and Engineering XXI, Lect. Notes Comput. Sci. Eng. 98, Springer, Cham, 2014, pp. 237-245. · Zbl 1455.74012
[8] X.-C. Cai and D. E. Keyes, Nonlinearly preconditioned inexact Newton algorithms, SIAM J. Sci. Comput., 24 (2002), pp. 183-200, https://doi.org/10.1137/S106482750037620X. · Zbl 1015.65058
[9] X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput., 21 (1999), pp. 792-797, https://doi.org/10.1137/S106482759732678X. · Zbl 0944.65031
[10] L. Cambier, C. Chen, E. G. Boman, S. Rajamanickam, R. S. Tuminaro, and E. Darve, An algebraic sparsified nested dissection algorithm using low-rank approximations, SIAM J. Matrix Anal. Appl., 41 (2020), pp. 715-746, https://doi.org/10.1137/19M123806X. · Zbl 1441.65048
[11] C. Chen, L. Cambier, E. G. Boman, S. Rajamanickam, R. S. Tuminaro, and E. Darve, A robust hierarchical solver for ill-conditioned systems with applications to ice sheet modeling, J. Comput. Phys., 396 (2019), pp. 819-836. · Zbl 1452.65079
[12] P. Cresta, O. Allix, C. Rey, and S. Guinard, Nonlinear localization strategies for domain decomposition methods: Application to post-buckling analyses, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1436-1446, https://doi.org/10.1016/j.cma.2006.03.013. · Zbl 1173.74408
[13] C. R. Dohrmann, A. Klawonn, and O. B. Widlund, Domain decomposition for less regular subdomains: Overlapping Schwarz in two dimensions, SIAM J. Numer. Anal., 46 (2008), pp. 2153-2168, https://doi.org/10.1137/070685841. · Zbl 1183.65160
[14] C. R. Dohrmann, A. Klawonn, and O. B. Widlund, A family of energy minimizing coarse spaces for overlapping Schwarz preconditioners, in Domain Decomposition Methods in Science and Engineering XVII, Lect. Notes Comput. Sci. Eng. 60, Springer, Berlin, 2008, pp. 247-254. · Zbl 1359.65289
[15] C. R. Dohrmann and O. B. Widlund, An overlapping Schwarz algorithm for almost incompressible elasticity, SIAM J. Numer. Anal., 47 (2009), pp. 2897-2923, https://doi.org/10.1137/080724320. · Zbl 1410.74064
[16] C. R. Dohrmann and O. B. Widlund, An alternative coarse space for irregular subdomains and an overlapping Schwarz algorithm for scalar elliptic problems in the plane, SIAM J. Numer. Anal., 50 (2012), pp. 2522-2537, https://doi.org/10.1137/110853959. · Zbl 1261.65129
[17] C. R. Dohrmann and O. B. Widlund, On the design of small coarse spaces for domain decomposition algorithms, SIAM J. Sci. Comput., 39 (2017), pp. A1466-A1488, https://doi.org/10.1137/17M1114272. · Zbl 1369.65161
[18] E. Efstathiou and M. J. Gander, Why restricted additive Schwarz converges faster than additive Schwarz, BIT, 43 (2003), pp. 945-959. · Zbl 1045.65027
[19] O. Gagliardini, T. Zwinger, F. Gillet-Chaulet, G. Durand, L. Favier, B. de Fleurian, R. Greve, M. Malinen, C. Martín, P. R\aaback, J. Ruokolainen, M. Sacchettini, M. Schäfer, H. Seddik, and J. Thies, Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6 (2013), pp. 1299-1318.
[20] F. Habbal, E. Larour, M. Morlighem, H. Seroussi, C. P. Borstad, and E. Rignot, Optimal numerical solvers for transient simulations of ice flow using the ice sheet system model (ISSM versions 4.2.5 and 4.11), Geosci. Model Dev., 10 (2017), pp. 155-168.
[21] A. Heinlein, Parallel Overlapping Schwarz Preconditioners and Multiscale Discretizations with Applications to Fluid-Structure Interaction and Highly Heterogeneous Problems, Ph.D. thesis, Universität zu Köln, Köln, Germany, 2016, https://kups.ub.uni-koeln.de/6841.
[22] A. Heinlein, C. Hochmuth, and A. Klawonn, Monolithic overlapping Schwarz domain decomposition methods with GDSW coarse spaces for incompressible fluid flow problems, SIAM J. Sci. Comput., 41 (2019), pp. C291-C316, https://doi.org/10.1137/18M1184047. · Zbl 1420.65034
[23] A. Heinlein, C. Hochmuth, and A. Klawonn, Reduced dimension GDSW coarse spaces for monolithic Schwarz domain decomposition methods for incompressible fluid flow problems, Internat. J. Numer. Methods Engrg., 121 (2020), pp. 1101-1119, https://doi.org/10.1002/nme.6258. · Zbl 1420.65034
[24] A. Heinlein, C. Hochmuth, and A. Klawonn, Fully algebraic two-level overlapping Schwarz preconditioners for elasticity problems, in Numerical Mathematics and Advanced Applications, ENUMATH 2019, F. J. Vermolen and C. Vuik, eds., Springer, Cham, 2021, pp. 531-539. · Zbl 1471.65214
[25] A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach, and O. B. Widlund, Adaptive GDSW coarse spaces of reduced dimension for overlapping Schwarz methods, SIAM J. Sci. Comput., to appear; preprint, https://kups.ub.uni-koeln.de/12113/. · Zbl 1425.65045
[26] A. Heinlein, A. Klawonn, and M. Lanser, Adaptive nonlinear domain decomposition methods, SIAM J. Sci. Comput., Copper Mountain special section, submitted July 2021; preprint, https://kups.ub.uni-koeln.de/id/eprint/52537. · Zbl 1476.65326
[27] A. Heinlein, A. Klawonn, M. Lanser, and J. Weber, Predicting the geometric location of critical edges in adaptive GDSW overlapping domain decomposition methods using deep learning, Tech. report, accepted for publication in the proceedings of the DD26 conference, August 2021. · Zbl 1429.65065
[28] A. Heinlein, A. Klawonn, S. Rajamanickam, and O. Rheinbach, FROSch: A fast and robust overlapping Schwarz domain decomposition preconditioner based on Xpetra in Trilinos, in Domain Decomposition Methods in Science and Engineering XXV, Springer, Cham, 2020, pp. 176-184.
[29] A. Heinlein, A. Klawonn, and O. Rheinbach, A parallel implementation of a two-level overlapping Schwarz method with energy-minimizing coarse space based on Trilinos, SIAM J. Sci. Comput., 38 (2016), pp. C713-C747, https://doi.org/10.1137/16M1062843. · Zbl 1355.65168
[30] A. Heinlein, A. Klawonn, O. Rheinbach, and F. Röver, A three-level extension of the GDSW overlapping Schwarz preconditioner in three dimensions, in Domain Decomposition Methods in Science and Engineering XXV, Springer, Cham, 2020, pp. 185-192. · Zbl 1433.65333
[31] A. Heinlein and M. Lanser, Additive and hybrid nonlinear two-level Schwarz methods and energy minimizing coarse spaces for unstructured grids, SIAM J. Sci. Comput., 42 (2020), pp. A2461-A2488, https://doi.org/10.1137/19M1276972. · Zbl 1453.65428
[32] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952), pp. 409-436. · Zbl 0048.09901
[33] I. J. Hewitt and C. Schoof, Models for polythermal ice sheets and glaciers, The Cryosphere, 11 (2017), pp. 541-551.
[34] T. Hillebrand, M. J. Hoffman, M. Perego, S. F. Price, and I. Howat, The contribution of Humboldt Glacier, North Greenland, to sea-level rise through 2100 constrained by recent observations of speedup and retreat, The Cryosphere, submitted (2022).
[35] M. J. Hoffman, M. Perego, S. F. Price, W. H. Lipscomb, T. Zhang, D. Jacobsen, I. Tezaur, A. G. Salinger, R. Tuminaro, and L. Bertagna, MPAS-Albany land ice (MALI): A variable-resolution ice sheet model for earth system modeling using Voronoi grids, Geosci. Model Dev., 11 (2018), pp. 3747-3780.
[36] T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134 (1997), pp. 169-189. · Zbl 0880.73065
[37] Intergovernmental Panel on Climate Change, Climate Change 2013-The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2014.
[38] T. Isaac, G. Stadler, and O. Ghattas, Solution of nonlinear Stokes equations discretized by high-order finite elements on nonconforming and anisotropic meshes, with application to ice sheet dynamics, SIAM J. Sci. Comput., 37 (2015), pp. B804-B833, https://doi.org/10.1137/140974407. · Zbl 1327.65242
[39] A. Klawonn and L. Pavarino, Overlapping Schwarz methods for mixed linear elasticity and Stokes problems, Comput. Methods Appl. Mech. Engrg., 165 (1998), pp. 233-245. · Zbl 0948.74077
[40] A. Klawonn and L. Pavarino, A comparison of overlapping Schwarz methods and block preconditioners for saddle point problems, Numer. Linear Algebra Appl., 7 (2000), pp. 1-25. · Zbl 0982.65036
[41] A. Klawonn and O. Rheinbach, A parallel implementation of dual-primal FETI methods for three-dimensional linear elasticity using a transformation of basis, SIAM J. Sci. Comput., 28 (2006), pp. 1886-1906, https://doi.org/10.1137/050624364. · Zbl 1124.74049
[42] W. Leng, L. Ju, M. Gunzburger, and S. Price, A parallel computational model for three-dimensional, thermo-mechanical Stokes flow simulations of glaciers and ice sheets, Commun. Comput. Phys., 16 (2014), pp. 1056-1080. · Zbl 1373.86004
[43] W. Leng, L. Ju, M. Gunzburger, S. Price, and T. Ringler, A parallel high-order accurate finite element nonlinear Stokes ice sheet model and benchmark experiments, J. Geophys. Res. Earth Surface, 117 (2012).
[44] M. Perego, A. Barone, L. Bertagna, T. Hilbrandt, M. Hoffman, S. Price, and G. Stadler, A steady-state thermo-mechanical solver for ice-sheet modeling, The Cryosphere, in preparation.
[45] M. Perego, M. Gunzburger, and J. Burkardt, Parallel finite-element implementation for higher-order ice-sheet models, J. Glaciology, 58 (2012), pp. 76-88.
[46] M. Rückamp, A. Humbert, T. Kleiner, M. Morlighem, and H. Seroussi, Extended enthalpy formulations in the ice flow model ISSM version \(4.17\): Discontinuous conductivity and anisotropic SUPG, Geosci. Model Dev. Discussions, 2020 (2020), pp. 1-18.
[47] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Comput., 7 (1986), pp. 856-869, https://doi.org/10.1137/0907058. · Zbl 0599.65018
[48] A. G. Salinger, R. A. Bartlett, A. M. Bradley, Q. Chen, I. P. Demeshko, X. Gao, G. A. Hansen, A. Mota, R. P. Muller, E. Nielsen, J. T. Ostien, R. P. Pawlowski, M. Perego, E. T. Phipps, W. Sun, and I. K. Tezaur, Albany: Using component-based design to develop a flexible, generic multiphysics analysis code, Int. J. Multiscale Comput. Eng., 14 (2016), pp. 415-438.
[49] C. Schoof and I. J. Hewitt, A model for polythermal ice incorporating gravity-driven moisture transport, J. Fluid Mech., 797 (2016), pp. 504-535. · Zbl 1422.86018
[50] I. K. Tezaur, M. Perego, A. G. Salinger, R. S. Tuminaro, and S. Price, Albany/FELIX: A parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis, Geosci. Model Dev., 8 (2015), pp. 1-24.
[51] I. K. Tezaur, R. S. Tuminaro, M. Perego, A. G. Salinger, and S. F. Price, On the scalability of the Albany/FELIX first-order Stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets, Procedia Comput. Sci., 51 (2015), pp. 2026-2035.
[52] Trilinos Project Team, The Trilinos Project Website, https://trilinos.github.io/.
[53] R. Tuminaro, M. Perego, I. Tezaur, A. Salinger, and S. Price, A matrix dependent/algebraic multigrid approach for extruded meshes with applications to ice sheet modeling, SIAM J. Sci. Comput., 38 (2016), pp. C504-C532, https://doi.org/10.1137/15M1040839. · Zbl 1351.65095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.