×

Enhanced flow direction arithmetic optimization algorithm for mathematical optimization problems with applications of data clustering. (English) Zbl 07511076

MSC:

90-XX Operations research, mathematical programming
65-XX Numerical analysis
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abualigah, L.; Diabat, A., Chaotic binary group search optimizer for feature selection, Expert Syst Appl, Article 116368 pp. (2021)
[2] Kaveh, A.; Mahdavi, V. R., Colliding bodies optimization: a novel meta-heuristic method, Comput Struct, 139, 18-27 (2014)
[3] Beck, A.; Teboulle, M., Gradient-based algorithms with applications to signal recovery, Convex Optim Signal Process Commun, 42-88 (2009) · Zbl 1211.90290
[4] Zheng, R.; Jia, H.; Abualigah, L.; Liu, Q.; Wang, S., An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems, Math Biosci Eng, 19, 1, 473-512 (2022)
[5] Lin, S.; Jia, H.; Abualigah, L.; Altalhi, M., Enhanced slime mould algorithm for multilevel thresholding image segmentation using entropy measures, Entropy, 23, 12, 1700 (2021)
[6] Nadimi-Shahraki, M. H.; Fatahi, A.; Zamani, H.; Mirjalili, S.; Abualigah, L.; Abd Elaziz, M., Migration-based moth-flame optimization algorithm, Processes, 9, 12, 2276 (2021)
[7] Niknam, T.; Mojarrad, H. D.; Meymand, H. Z., A new particle swarm optimization for non-convex economic dispatch, Eur Trans Electr Power, 21, 1, 656-679 (2011)
[8] Wang, S.; Liu, Q.; Liu, Y.; Jia, H.; Abualigah, L.; Zheng, R., A hybrid SSA and SMA with mutation opposition-based learning for constrained engineering problems, Comput Intell Neurosci, 2021 (2021)
[9] Alsalibi, B.; Mirjalili, S.; Abualigah, L.; Gandomi, A. H., A comprehensive survey on the recent variants and applications of membrane-inspired evolutionary algorithms, Arch Comput Methods Eng, 1-17 (2022)
[10] Zitar, R. A.; Abualigah, L.; Al-Dmour, N. A., Review and analysis for the red deer algorithm, J Ambient Intell Humaniz Comput, 1-11 (2021)
[11] Beheshti, Z.; Shamsuddin, S. M.H., A review of population-based meta-heuristic algorithms, Int J Adv Soft Comput Appl, 5, 1, 1-35 (2013)
[12] Wang, S.; Jia, H.; Abualigah, L.; Liu, Q.; Zheng, R., An improved hybrid aquila optimizer and harris hawks algorithm for solving industrial engineering optimization problems, Processes, 9, 9, 1551 (2021)
[13] Poorzahedy, H.; Rouhani, O. M., Hybrid meta-heuristic algorithms for solving network design problem, Eur J Oper Res, 182, 2, 578-596 (2007) · Zbl 1121.90024
[14] Dhiman, G.; Garg, M., MoSSE: a novel hybrid multi-objective meta-heuristic algorithm for engineering design problems, Soft Comput, 24, 24, 18379-18398 (2020)
[15] Hayyolalam, V.; Kazem, A. A.P., Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems, Eng Appl Artif Intell, 87, Article 103249 pp. (2020)
[16] Kaur, S.; Awasthi, L. K.; Sangal, A., HMOSHSSA: a hybrid meta-heuristic approach for solving constrained optimization problems, Eng Comput, 37, 4, 3167-3203 (2021)
[17] Kaveh, A.; Talatahari, S.; Khodadadi, N., The hybrid invasive weed optimization-shuffled frog-leaping algorithm applied to optimal design of frame structures, Period Polytech Civil Eng, 63, 3, 882-897 (2019)
[18] Altabeeb, A. M.; Mohsen, A. M.; Abualigah, L.; Ghallab, A., Solving capacitated vehicle routing problem using cooperative firefly algorithm, Appl Soft Comput, 108, Article 107403 pp. (2021)
[19] Khodadadi, N.; Azizi, M.; Talatahari, S.; Sareh, P., Multi-objective crystal structure algorithm (MOCryStAl): Introduction and performance evaluation, IEEE Access, 9, 117795-117812 (2021)
[20] Hassan, M. H.; Kamel, S.; Abualigah, L.; Eid, A., Development and application of slime mould algorithm for optimal economic emission dispatch, Expert Syst Appl, 182, Article 115205 pp. (2021)
[21] Whitley, D., A genetic algorithm tutorial, Statist Comput, 4, 2, 65-85 (1994)
[22] Abualigah, L. M.; Khader, A. T.; Hanandeh, E. S., A new feature selection method to improve the document clustering using particle swarm optimization algorithm, J Comput Sci, 25, 456-466 (2018)
[23] Dorigo, M.; Blum, C., Ant colony optimization theory: A survey, Theoret Comput Sci, 344, 2-3, 243-278 (2005) · Zbl 1154.90626
[24] Kaveh, A.; Eslamlou, A. D.; Khodadadi, N., Dynamic water strider algorithm for optimal design of skeletal structures, Period Polytech Civil Eng, 64, 3, 904-916 (2020)
[25] Kaveh, A.; Talatahari, S.; Khodadadi, N., Stochastic paint optimizer: theory and application in civil engineering, Eng Comput, 1-32 (2020)
[26] Karami, H.; Anaraki, M. V.; Farzin, S.; Mirjalili, S., Flow direction algorithm (FDA): A novel optimization approach for solving optimization problems, Comput Ind Eng, 156, Article 107224 pp. (2021)
[27] Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A. A.; Al-qaness, M. A.; Gandomi, A. H., Aquila optimizer: A novel meta-heuristic optimization algorithm, Comput Ind Eng, 157, Article 107250 pp. (2021)
[28] Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z. W.; Gandomi, A. H., Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer, Expert Syst Appl, 191, Article 116158 pp. (2022)
[29] Safaldin, M.; Otair, M.; Abualigah, L., Improved binary gray wolf optimizer and SVM for intrusion detection system in wireless sensor networks, J Ambient Intell Humaniz Comput, 12, 2, 1559-1576 (2021)
[30] Abualigah, L., Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications, Neural Comput Appl, 33, 7, 2949-2972 (2021)
[31] Jain, A. K., Data clustering: 50 years beyond k-means, (Joint european conference on machine learning and knowledge discovery in databases (2008), Springer), 3-4
[32] Zhou, Y.; Wu, H.; Luo, Q.; Abdel-Baset, M., Automatic data clustering using nature-inspired symbiotic organism search algorithm, Knowl-Based Syst, 163, 546-557 (2019)
[33] Agbaje, M. B.; Ezugwu, A. E.; Els, R., Automatic data clustering using hybrid firefly particle swarm optimization algorithm, IEEE Access, 7, 184963-184984 (2019)
[34] Huang, K.-W.; Wu, Z.-X.; Peng, H.-W.; Tsai, M.-C.; Hung, Y.-C.; Lu, Y.-C., Memetic particle gravitation optimization algorithm for solving clustering problems, Ieee Access, 7, 80950-80968 (2019)
[35] Mageshkumar, C.; Karthik, S.; Arunachalam, V., Hybrid metaheuristic algorithm for improving the efficiency of data clustering, Cluster Comput, 22, 1, 435-442 (2019)
[36] Abualigah, L. M.; Khader, A. T.; Hanandeh, E. S.; Gandomi, A. H., A novel hybridization strategy for krill herd algorithm applied to clustering techniques, Appl Soft Comput, 60, 423-435 (2017)
[37] Abdulwahab, H. A.; Noraziah, A.; Alsewari, A. A.; Salih, S. Q., An enhanced version of black hole algorithm via levy flight for optimization and data clustering problems, IEEE Access, 7, 142085-142096 (2019)
[38] Aljarah, I.; Mafarja, M.; Heidari, A. A.; Faris, H.; Mirjalili, S., Clustering analysis using a novel locality-informed grey wolf-inspired clustering approach, Knowl Inf Syst, 62, 2, 507-539 (2020)
[39] Abualigah, L.; Abd Elaziz, M.; Shehab, M.; Alomari, O. A.; Alshinwan, M.; Alabool, H., Hybrid Harris Hawks optimization with differential evolution for data clustering, (Metaheuristics in machine learning: theory and applications (2021), Springer), 267-299
[40] Deeb, H.; Sarangi, A.; Mishra, D.; Sarangi, S. K., Improved black hole optimization algorithm for data clustering, J King Saud Univ-Comput Inf Sci (2020)
[41] Hruschka, E. R.; Campello, R. J.; Freitas, A. A., A survey of evolutionary algorithms for clustering, IEEE Trans Syst Man Cybern Part C (Appl Rev), 39, 2, 133-155 (2009)
[42] O’Callaghan, J. F.; Mark, D. M., The extraction of drainage networks from digital elevation data, Comput Vis Graph Image Process, 28, 3, 323-344 (1984)
[43] Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A. H., The arithmetic optimization algorithm, Comput Methods Appl Mech Eng, 376, Article 113609 pp. (2021) · Zbl 07340412
[44] Abd Elaziz, M.; Abualigah, L.; Ibrahim, R. A.; Attiya, I., IoT workflow scheduling using intelligent arithmetic optimization algorithm in fog computing, Comput Intell Neurosci, 2021 (2021)
[45] Premkumar, M.; Jangir, P.; Kumar, B. S.; Sowmya, R.; Alhelou, H. H.; Abualigah, L., A new arithmetic optimization algorithm for solving real-world multiobjective CEC-2021 constrained optimization problems: Diversity analysis and validations, IEEE Access (2021)
[46] Harwit, M., Astrophysical concepts (2006), Springer Science & Business Media · Zbl 1130.85001
[47] Abualigah, L.; Diabat, A.; Elaziz, M. A., Improved slime mould algorithm by opposition-based learning and levy flight distribution for global optimization and advances in real-world engineering problems, J Ambient Intell Humaniz Comput, 1-40 (2021)
[48] Liu, H.; Ding, G.; Wang, B., Bare-bones particle swarm optimization with disruption operator, Appl Math Comput, 238, 106-122 (2014) · Zbl 1334.90213
[49] Abualigah, L.; Shehab, M.; Diabat, A.; Abraham, A., Selection scheme sensitivity for a hybrid Salp Swarm algorithm: analysis and applications, Eng Comput, 1-27 (2020)
[50] Mirjalili, S.; Lewis, A., The whale optimization algorithm, Adv Eng Softw, 95, 51-67 (2016)
[51] Abualigah, L.; Diabat, A., Advances in sine cosine algorithm: a comprehensive survey, Artif Intell Rev, 1-42 (2021)
[52] Alshinwan, M.; Abualigah, L.; Shehab, M.; Abd Elaziz, M.; Khasawneh, A. M.; Alabool, H., Dragonfly algorithm: a comprehensive survey of its results, variants, and applications, Multim Tools Appl, 1-38 (2021)
[53] Rashaideh, H.; Sawaie, A.; Al-Betar, M. A.; Abualigah, L. M.; Al-Laham, M. M.; Ra’ed, M., A grey wolf optimizer for text document clustering, J Intell Syst, 29, 1, 814-830 (2020)
[54] Abualigah, L.; Diabat, A., A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments, Cluster Comput, 24, 1, 205-223 (2021)
[55] Houssein, E. H.; Dirar, M.; Abualigah, L.; Mohamed, W. M., An efficient equilibrium optimizer with support vector regression for stock market prediction, Neural Comput Appl, 1-36 (2021)
[56] Ewees, A. A.; Al-qaness, M. A.; Abualigah, L.; Oliva, D.; Algamal, Z. Y.; Anter, A. M., Boosting arithmetic optimization algorithm with genetic algorithm operators for feature selection: Case study on cox proportional hazards model, Mathematics, 9, 18, 2321 (2021)
[57] Zheng, R.; Jia, H.; Abualigah, L.; Liu, Q.; Wang, S., Deep ensemble of slime mold algorithm and arithmetic optimization algorithm for global optimization, Processes, 9, 10, 1774 (2021)
[58] Mirjalili, S.; Gandomi, A. H.; Mirjalili, S. Z.; Saremi, S.; Faris, H.; Mirjalili, S. M., Salp Swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv Eng Softw, 114, 163-191 (2017)
[59] Mirjalili, S., SCA: a sine cosine algorithm for solving optimization problems, Knowl-Based Syst, 96, 120-133 (2016)
[60] Mirjalili, S., Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput Appl, 27, 4, 1053-1073 (2016)
[61] Mirjalili, S.; Mirjalili, S. M.; Lewis, A., Grey wolf optimizer, Adv Eng Softw, 69, 46-61 (2014)
[62] Kennedy, J.; Eberhart, R., Particle swarm optimization, (Proceedings Of ICNN’95-international conference on neural networks, 4 (1995), IEEE), 1942-1948
[63] Mirjalili, S., The ant lion optimizer, Adv Eng Softw, 83, 80-98 (2015)
[64] Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S., Equilibrium optimizer: A novel optimization algorithm, Knowl-Based Syst, 191, Article 105190 pp. (2020)
[65] Suganthan, P. N.; Hansen, N.; Liang, J. J.; Deb, K.; Chen, Y.-P.; Auger, A., Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, KanGAL Rep, 2005005, 2005, 2005 (2005)
[66] Abdollahzadeh, B.; Gharehchopogh, F. S.; Mirjalili, S., African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems, Comput Ind Eng, 158, Article 107408 pp. (2021)
[67] Abdollahzadeh, B.; Soleimanian Gharehchopogh, F.; Mirjalili, S., Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems, Int J Intell Syst, 36, 10, 5887-5958 (2021)
[68] Gul, F.; Mir, I.; Abualigah, L.; Sumari, P., Multi-robot space exploration: An augmented arithmetic approach, IEEE Access, 9, 107738-107750 (2021)
[69] Ibrahim, R. A.; Abualigah, L.; Ewees, A. A.; Al-Qaness, M. A.; Yousri, D.; Alshathri, S., An electric fish-based arithmetic optimization algorithm for feature selection, Entropy, 23, 9, 1189 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.