×

A 2D discrete moisture diffusion model for simulating desiccation fracturing of soil. (English) Zbl 07511078


MSC:

74-XX Mechanics of deformable solids
76-XX Fluid mechanics

Software:

HOSS; MultiFracs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Rogers, J. D.; Olshansky, R.; Rogers, R. B., Damage to foundations from expansive soils, Claims People, 3, 4, 1-4 (1993)
[2] El Mountassir, G.; Sánchez, M.; Romero, E.; Soemitro, R. A., Behaviour of compacted silt used to construct flood embankment, Proc Instit Civil Eng-Geotech Eng, 164, 3, 195-210 (2011)
[3] Milligan, V., Some uncertainties in embankment dam engineering, J Geotech Geoenviron Eng, 129, 9, 785-797 (2003)
[4] Zielinski, M.; Sánchez, M.; Romero, E.; Sentenac, P., Assessment of water retention behaviour in compacted fills, Proc Instit Civil Eng-Geotech Eng, 164, 2, 139-148 (2011)
[5] Suter, G. W.; Luxmoore, R. J.; Smith, E. D., Compacted soil barriers at abandoned landfill sites are likely to fail in the long term, J Environ Qual, 22, 2, 217-226 (1993)
[6] Bagge G. Tension cracks in saturated clay cuttings. International conference on soil mechanics and foundation engineering 111985. 393-95.
[7] Zhou, Z.; Zhang, J.; Ning, F.; Luo, Y.; Chong, L.; Sun, K., Large-scale test model of the progressive deformation and failure of cracked soil slopes, J Earth Sci, 31, 6, 1097-1108 (2020)
[8] Peron, H.; Hueckel, T.; Laloui, L.; Hu, L. B., Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification, Can Geotech J, 46, 10, 1177-1201 (2009)
[9] Peron, H.; Laloui, L.; Hueckel, T.; Hu, L., Experimental study of desiccation of soil, Unsat Soils, 2006, 1073-1084 (2006)
[10] Zeng, H.; Tang, C.-s.; Cheng, Q.; Inyang, H. I.; Rong, D.-z; Lin, L., Coupling effects of interfacial friction and layer thickness on soil desiccation cracking behavior, Eng Geol, 260 (2019)
[11] Tang, C.; Shi, B.; Liu, C.; Zhao, L.; Wang, B., Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils, Eng Geol, 101, 3-4, 204-217 (2008)
[12] Tang, C.-. S.; Shi, B.; Liu, C.; Gao, L.; Inyang, H. I., Experimental investigation of the desiccation cracking behavior of soil layers during drying, J Mater Civ Eng, 23, 6, 873-878 (2011)
[13] Hu, L. B.; Hueckel, T.; Peron, H.; Laloui, L., Desiccation shrinkage of unconstrained soil in the saturated phase, (Proceeding 1st European conference on unsaturated soils, unsaturated soils: advances in geo-engineering (2008)), 653-658
[14] Yoshida, S.; Adachi, K., Numerical analysis of crack generation in saturated deformable soil under row-planted vegetation, Geoderma, 120, 1-2, 63-74 (2004)
[15] Peron, H.; Hu, L.; Laloui, L.; Hueckel, T., Numerical and experimental investigation of desiccation of soil, (Proceedings of the Third Asian Conference on Unsaturated Soils (2007), Science Press: Science Press Citeseer), 391-396, Yin et al. eds
[16] Bui H.H., Nguyen G.D., Kodikara J., Sanchez M. Soil cracking modelling using the mesh-free SPH method. arXiv preprint arXiv:150301172 2015.
[17] Lin, Z.-. Y.; Wang, Y.-. S.; Tang, C.-. S.; Cheng, Q.; Zeng, H.; Liu, C., Discrete element modelling of desiccation cracking in thin clay layer under different basal boundary conditions, Comput Geotech, 130 (2021)
[18] Gui, Y.; Zhao, G. F., Modelling of laboratory soil desiccation cracking using DLSM with a two-phase bond model, Comput Geotech, 69, 578-587 (2015)
[19] Sima, J.; Jiang, M.; Zhou, C., Numerical simulation of desiccation cracking in a thin clay layer using 3D discrete element modeling, Comput Geotech, 56, 168-180 (2014)
[20] Amarasiri, A.; Kodikara, J., Use of material interfaces in DEM to simulate soil fracture propagation in mode I cracking, Int J Geomech, 11, 4, 314-322 (2011)
[21] Gui, Y. L.; Zhao, Z. Y.; Kodikara, J.; Bui, H. H.; Yang, S. Q., Numerical modelling of laboratory soil desiccation cracking using UDEC with a mix-mode cohesive fracture model, Eng Geol, 202, 14-23 (2016)
[22] Munjiza, A. A., The combined finite-discrete element method (2004), John Wiley & Sons · Zbl 1194.74452
[23] Munjiza, A. A.; Knight, E. E.; Rougier, E., Computational mechanics of discontinua (2011), John Wiley & Sons
[24] Liu, H.; Fukuda, D.; Han, H., Development and application of a three-dimensional GPGPU-parallelized FDEM for modelling rock fragmentation by blast, IOP conference series: earth and environmental science, Article 032027 pp. (2021), IOP Publishing
[25] Fukuda, D.; Mohammadnejad, M.; Liu, H.; Zhang, Q.; Zhao, J.; Dehkhoda, S., Development of a 3D hybrid finite-discrete element simulator based on GPGPU-parallelized computation for modelling rock fracturing under quasi-static and dynamic loading conditions, Rock Mech Rock Eng, 53, 3, 1079-1112 (2020)
[26] Farsi, A.; Bedi, A.; Latham, J.; Bowers, K., Simulation of fracture propagation in fibre-reinforced concrete using FDEM: an application to tunnel linings, Comput Particle Mech, 7, 5, 961-974 (2020)
[27] Latham, J.-. P.; Xiang, J.; Farsi, A.; Joulin, C.; Karantzoulis, N., A class of particulate problems suited to FDEM requiring accurate simulation of shape effects in packed granular structures, Comput Particle Mech, 7, 5, 975-986 (2020)
[28] Knight, E. E.; Rougier, E.; Lei, Z.; Euser, B.; Chau, V.; Boyce, S. H., HOSS: an implementation of the combined finite-discrete element method, Comput Particle Mech, 7, 5, 765-787 (2020)
[29] Rougier, E.; Munjiza, A.; Lei, Z.; Chau, V. T.; Knight, E. E.; Hunter, A., The combined plastic and discrete fracture deformation framework for finite-discrete element methods, Int J Numer Methods Eng, 121, 5, 1020-1035 (2020)
[30] Deng, P.; Liu, Q.; Huang, X.; Ma, H., A new hysteretic damping model and application for the combined finite-discrete element method (FDEM), Eng Anal Bound Elem, 132, 370-382 (2021) · Zbl 07391009
[31] Okubo K., Rougier E., Lei Z., Bhat H.S. Modeling earthquakes with off-fault damage using the combined finite-discrete element method. arXiv preprint arXiv:191103468 2019.
[32] Yan, C.; Zheng, H.; Sun, G.; Ge, X., Combined finite-discrete element method for simulation of hydraulic fracturing, Rock Mech Rock Eng, 49, 4, 1389-1410 (2015)
[33] Yan, C.; Zheng, H., A two-dimensional coupled hydro-mechanical finite-discrete model considering porous media flow for simulating hydraulic fracturing, Int J Rock Mech Min Sci, 88, 115-128 (2016)
[34] Yan, C.; Zheng, H., Three-dimensional hydromechanical model of hydraulic fracturing with arbitrarily discrete fracture networks using finite-discrete element method, Int J Geomech, 17, 6 (2017)
[35] Yan, C.; Ren, Y.; Yang, Y., A 3D thermal cracking model for rockbased on the combined finite-discrete element method, Comput Particle Mech, 7, 5, 881-901 (2019)
[36] Yan, C.; Zheng, H., A coupled thermo-mechanical model based on the combined finite-discrete element method for simulating thermal cracking of rock, Int J Rock Mech Min Sci, 91, 170-178 (2017)
[37] Yan, C.; Jiao, Y.-Y., A 2D discrete heat transfer model considering the thermal resistance effect of fractures for simulating the thermal cracking of brittle materials, Acta Geotech, 15, 5, 1303-1319 (2019)
[38] Yan, C.; Zheng, Y.; Huang, D.; Wang, G., A coupled contact heat transfer and thermal cracking model for discontinuous and granular media, Comput Methods Appl Mech Eng, 375 (2021) · Zbl 07340444
[39] Yan, C.; Jiao, Y. Y., FDEM-TH3D: a three-dimensional coupled hydrothermal model for fractured rock, Int J Numer Anal Methods Geomech, 43, 1, 415-440 (2019)
[40] Yan, C.; Jiao, Y.-Y.; Yang, S., A 2D coupled hydro-thermal model for the combined finite-discrete element method, Acta Geotech, 14, 2, 403-416 (2019)
[41] Munjiza, A.; Andrews, K.; White, J., Combined single and smeared crack model in combined finite-discrete element analysis, Int J Numer Methods Eng, 44, 1, 41-57 (1999) · Zbl 0936.74071
[42] Hobbs, P.; Jones, L.; Kirkham, M.; Gunn, D.; Entwisle, D., Shrinkage limit test results and interpretation for clay soils, Q J Eng Geol Hydrogeol, 52, 2, 220-229 (2019)
[43] Crank, J., The mathematics of diffusion (1979), Oxford University Press · Zbl 0427.35035
[44] Yan, C.; Jiao, Y. Y., A 2D discrete heat transfer model considering the thermal resistance effect of fractures for simulating the thermal cracking of brittle materials, Acta Geotech, 15, 1303-1319 (2020)
[45] Yan, C.; Jiao, Y. Y.; Zheng, H., A three‐dimensional heat transfer and thermal cracking model considering the effect of cracks on heat transfer, Int J Numer Anal Methods in Geomech, 43, 10, 1825-1853 (2019)
[46] Yan, C.; Fang, H.; Zheng, Y.; Zhao, Y.; Ning, F., Simulation of thermal shock of brittle materials using the finite-discrete element method, Eng Anal Bound Elem, 115, 142-155 (2020) · Zbl 1464.74221
[47] Yan, C.; Yang, Y.; Wang, G., A new 2D continuous-discontinuous heat conduction model for modeling heat transfer and thermal cracking in quasi-brittle materials, Comput Geotech, 137, 104231 (2021)
[48] Yan, C.; Huang, X.; Huang, D.; Wang, G., A new 3D continuous-discontinuous heat conduction model and coupled thermomechanical model for simulating the thermal cracking of brittle materials, Int J Solids Struct, 229, 15, 11123 (2021)
[49] Yan, C.; Zheng, H., FDEM-flow3D: a 3D hydro-mechanical coupled model considering the pore seepage of a rock matrix for simulating three-dimensional hydraulic fracturing, Comput Geotech, 81, 212-228 (2017)
[50] Yan, C.; Jiao, Y. Y., A 2D fully coupled hydro-mechanical finite-discrete element model with real pore seepage for simulating the deformation and fracture of porous medium driven by fluid, Comput Struct, 196, 311-326 (2018)
[51] Yan, C.; Jiao, Y. Y.; Zheng, H., A fully coupled three-dimensional hydro-mechanical finite discrete element approach with real porous seepage for simulating 3D hydraulic fracturing, Comput Geotech, 96, 73-89 (2018)
[52] Yan, C.; Fan, H.; Huang, D.; Wang, G., A 2D mixed fracture-pore seepage model and hydromechanical coupling for fractured porous media, Acta Geotech, 16, 10, 3061-3086 (2021)
[53] Yan, C.; Xie, X.; Ren, Y.; Ke, W.; Wang, G., A FDEM-based 2D coupled thermal-hydro-mechanical model for multiphysical simulation of rock fracturing, Int J Rock Mech Min Sci, 91, 170-178 (2017)
[54] Yan, C.; Tong, Y.; Luo, Z.; Ke, W.; Wang, G., A two-dimensional grouting model considering hydromechanical coupling and fracturing for fractured rock mass, Eng Anal Bound Elem, 133, 1, 385-397 (2021) · Zbl 07439991
[55] Ma, G.; Chen, Y.; Yao, F.; Zhou, W.; Wang, Q., Evolution of particle size and shape towards a steady state: Insights from FDEM simulations of crushable granular materials, Comput Geotech, 112, 147-158 (2019)
[56] Ma, G.; Zhou, W.; Chang, X. L.; Chen, M. X., A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method, Granular Matter, 18, 7 (2016)
[57] Ma, G.; Zhou, W.; Chang, X. L.; Ng, T. T.; Yang, L., Formation of shear bands in crushable and irregularly shaped granular materials and the associated microstructural evolution, Powder Technology, 301, 118-130 (2016)
[58] Ma, G.; Zhou, W.; Regueiro, R. A.; Wang, Q.; Chang, X., Modeling the fragmentation of rock grains using computed tomography and combined FDEM, Powder Technology, 308, 15, 388-397 (2017)
[59] Yang, Y.; Sun, G.; Zheng, H.; Yan, C., An improved numerical manifold method with multiple layers of mathematical cover systems for the stability analysis of soil-rock-mixture slopes, Engineering Geology, 246, 105373 (2020)
[60] Yan, C.; Tong, Y., Calibration of microscopic penalty parameters in the combined finite-discrete element method, Int J Geomech, 133, 1, 385-397 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.