×

DTSMA: dominant swarm with adaptive T-distribution mutation-based slime mould algorithm. (English) Zbl 1491.90136

Summary: The slime mould algorithm (SMA) is a metaheuristic algorithm recently proposed, which is inspired by the oscillations of slime mould. Similar to other algorithms, SMA also has some disadvantages such as insufficient balance between exploration and exploitation, and easy to fall into local optimum. This paper, an improved SMA based on dominant swarm with adaptive t-distribution mutation (DTSMA) is proposed. In DTSMA, the dominant swarm is used improved the SMA’s convergence speed, and the adaptive t-distribution mutation balances is used enhanced the exploration and exploitation ability. In addition, a new exploitation mechanism is hybridized to increase the diversity of populations. The performances of DTSMA are verified on CEC2019 functions and eight engineering design problems. The results show that for the CEC2019 functions, the DTSMA performances are best; for the engineering problems, DTSMA obtains better results than SMA and many algorithms in the literature when the constraints are satisfied. Furthermore, DTSMA is used to solve the inverse kinematics problem for a 7-DOF robot manipulator. The overall results show that DTSMA has a strong optimization ability. Therefore, the DTSMA is a promising metaheuristic optimization for global optimization problems.

MSC:

90C26 Nonconvex programming, global optimization
90C59 Approximation methods and heuristics in mathematical programming
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J, Newton’s method for multiobjective optimization, SIAM J. Optim., 20, 602-626 (2009) · Zbl 1195.90078
[2] Ž. Povalej, Quasi-Newton’s method for multiobjective optimization, <i>J. Comput. Appl. Math.</i>, <b>255</b> (2013), 765-777. doi: <a href=“http://dx.doi.org/10.1016/j.cam.2013.06.045” target=“_blank”>10.1016/j.cam.2013.06.045</a>. · Zbl 1291.90316
[3] J, Nonlinear conjugate gradient methods with sufficient descent condition for large-scale unconstrained optimization, Math. Probl. Eng., 2009, 1-16 (2009) · Zbl 1184.65066
[4] M, Chaos cloud quantum bat hybrid optimization algorithm, Nonlinear Dyn., 103, 1167-1193 (2021)
[5] D, Comparative performance analysis of slime mould algorithm for efficient design of proportional-integral-derivative controller, Electrica, 21, 151-159 (2021)
[6] C, Teaching-learning-based pathfinder algorithm for function and engineering optimization problems, Appl. Intell. (2020)
[7] J, Genetic algorithms and machine learning, Mach. Learn., 3, 95-99 (1988)
[8] R, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11, 341-359 (1997) · Zbl 0888.90135
[9] S, Optimization by simulated annealing: Quantitative studies, J. Stat. Phys., 34, 975-986 (1984)
[10] L. K. Grover, A fast quantum mechanical algorithm for database search, <i>Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC ’96</i>, (1996), 212-219. doi: <a href=“http://dx.doi.org/10.1145/237814.237866” target=“_blank”>10.1145/237814.237866</a>. · Zbl 0922.68044
[11] O, A new optimization method: Big Bang-Big Crunch, Adv. Eng. Softw., 37, 106-111 (2005)
[12] B, ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization, Expert Syst. Appl., 38, 13170-13180 (2011)
[13] H, Lightning search algorithm, Appl. Soft Comput., 36, 315-333 (2015)
[14] S, Multi-Verse Optimizer: A nature-inspired algorithm for global optimization, Neural Comput. Appl., 27, 495-513 (2015)
[15] V, Heat transfer search (HTS): A novel optimization algorithm, Inf. Sci., 324, 217-246 (2015)
[16] W, A novel atom search optimization for dispersion coefficient estimation in groundwater, Future Gener. Comput. Syst., 91, 601-610 (2018)
[17] A, Equilibrium optimizer: A novel optimization algorithm, Knowl.-Based Syst., 191, 105190 (2020)
[18] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, <i>MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science</i>, (1995), 39-43. doi: <a href=“http://dx.doi.org/10.1109/MHS.1995.494215” target=“_blank”>10.1109/MHS.1995.494215</a>.
[19] D, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Glob. Optim., 39, 459-471 (2007) · Zbl 1149.90186
[20] R, Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems, Comput.-Aided Des., 43, 303-315 (2011)
[21] S, Grey Wolf Optimizer, Adv. Eng. Softw., 69, 46-61 (2014)
[22] S, The Whale Optimization Algorithm, Adv. Eng. Softw., 95, 51-67 (2016)
[23] S, Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw., 114, 163-191 (2017)
[24] E, A swarm optimization algorithm inspired in the behavior of the social-spider, Expert Syst. Appl., 40, 6374-6384 (2013)
[25] G, Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems, Knowl.-Based Syst., 165, 169-196 (2018)
[26] A, Marine Predators Algorithm: A nature-inspired metaheuristic, Expert Syst. Appl., 152, 113377 (2020)
[27] A, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97, 849-872 (2019)
[28] H, Novel meta-heuristic bald eagle search optimisation algorithm, Artif. Intell. Rev., 53, 2237-2264 (2019)
[29] S, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111, 300-323 (2020)
[30] M, Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems, Expert Syst. Appl., 174, 114685 (2021)
[31] D, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 67-82 (1996)
[32] Y, A novel state transition simulated annealing algorithm for the multiple traveling salesmen problem, J. Supercomput. (2021)
[33] K, A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module, Appl. Energy, 237, 241-257 (2019)
[34] C, Neighborhood centroid opposite-based learning Harris Hawks optimization for training neural networks, Evol. Intell. (2020)
[35] A, Improved Slime Mould Algorithm based on Firefly Algorithm for feature selection: A case study on QSAR model, Eng. Comput. (2021)
[36] M, An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection, Comput. Ind. Eng., 153, 107078 (2021)
[37] M, HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images, Appl. Soft Comput., 95, 106642 (2020)
[38] S, Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi’s entropy for chronic obstructive pulmonary disease, Comput. Biol. Med., 134, 104427 (2021)
[39] M, Normalized square difference based multilevel thresholding technique for multispectral images using leader slime mould algorithm, J. King Saud Univ. - Comput. Inf. Sci. (2020)
[40] D, A reliable approach for modeling the photovoltaic system under partial shading conditions using three diode model and hybrid marine predators-slime mould algorithm, Energy Convers. Manag., 243, 114269 (2021)
[41] M, A new strategy based on slime mould algorithm to extract the optimal model parameters of solar PV panel, Sustain. Energy Technol. Assess., 42, 100849 (2020)
[42] A, Parameters identification of PV model using improved slime mould optimizer and Lambert W-function, Energy Rep., 7, 875-887 (2021)
[43] Y, Boosting slime mould algorithm for parameter identification of photovoltaic models, Energy, 234, 121164 (2021)
[44] C, A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters, Optik, 223, 165277 (2020)
[45] D, Implementing modified swarm intelligence algorithm based on Slime moulds for path planning and obstacle avoidance problem in mobile robots, Appl. Soft Comput., 107, 107372 (2021)
[46] R, Chaos-opposition-enhanced slime mould algorithm for minimizing the cost of energy for the wind turbines on high-altitude sites, ISA Trans. (2020)
[47] M, Development and application of slime mould algorithm for optimal economic emission dispatch, Expert Syst. Appl., 182, 115205 (2021)
[48] Y, Optimal reactive power dispatch using an improved slime mould algorithm, Energy Reports, 7, 8742-8759 (2021)
[49] B, An enhanced binary slime mould algorithm for solving the 0-1 knapsack problem, Eng. Comput. (2021)
[50] S, Hybridised Artificial Neural Network Model with Slime Mould Algorithm: A Novel Methodology for Prediction of Urban Stochastic Water Demand, Water, 12, 2692 (2020)
[51] Z, An Efficient Parameter Adaptive Support Vector Regression Using K-Means Clustering and Chaotic Slime Mould Algorithm, IEEE Access, 8, 156851-156862 (2020)
[52] S. Ekinci, D. Izci, H. L. Zeynelgil, S. Orenc, An Application of Slime Mould Algorithm for Optimizing Parameters of Power System Stabilizer, <i>in 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey</i>, (2020), 1-5. doi: <a href=“http://dx.doi.org/10.1109/ISMSIT50672.2020.9254597” target=“_blank”>10.1109/ISMSIT50672.2020.9254597</a>.
[53] Y, An Efficient Slime Mould Algorithm Combined With K-Nearest Neighbor for Medical Classification Tasks, IEEE Access, 9, 113666-113682 (2021)
[54] M, MOSMA: Multi-Objective Slime Mould Algorithm Based on Elitist Non-Dominated Sorting, IEEE Access, 9, 3229-3248 (2021)
[55] C, Boosting Quantum Rotation Gate Embedded Slime Mould Algorithm, Expert Syst. Appl., 115082 (2021)
[56] E, Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems, Expert Syst. Appl., 174, 114689 (2021)
[57] H, Adaptive levy-assisted salp swarm algorithm: Analysis and optimization case studies, Math. Comput. Simul., 181, 380-409 (2020) · Zbl 07318226
[58] J. Zhao, Z.-M. Gao, W. Sun, The improved slime mould algorithm with Levy flight, <i>J. Phys. Conf. Ser.</i>, <b>1617</b> (2020), 012033. doi: <a href=“http://dx.doi.org/10.1088/1742-6596/1617/1/012033” target=“_blank”>10.1088/1742-6596/1617/1/012033</a>.
[59] X. Zhang, Y. Xu, C. Yu, A. A. Heidari, S. Li, H. Chen, et al., Gaussian mutational chaotic fruit fly-built optimization and feature selection, <i>Expert Syst. Appl.</i>, <b>141</b> (2019), 112976. doi: <a href=“http://dx.doi.org/10.1016/j.eswa.2019.112976” target=“_blank”>10.1016/j.eswa.2019.112976</a>.
[60] S. Song, P. Wang, A. A. Heidari, M. Wang, X. Zhao, H. Chen, et al., Dimension decided Harris hawks optimization with Gaussian mutation: Balance analysis and diversity patterns, <i>Knowl.-Based Syst.</i>, <b>215</b> (2020), 106425. doi: <a href=“http://dx.doi.org/10.1016/j.knosys.2020.106425” target=“_blank”>10.1016/j.knosys.2020.106425</a>.
[61] N, Single Sensor-Based MPPT of Partially Shaded PV System for Battery Charging by Using Cauchy and Gaussian Sine Cosine Optimization, IEEE Trans. Energy Convers., 983-992 (2017)
[62] S, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowl.-Based Syst., 89, 228-249 (2015)
[63] S. Mirjalili, The Ant Lion Optimizer, <i>Adv. Eng. Softw.</i>, <b>83</b> (2015), 80-98. doi: <a href=“http://dx.doi.org/10.1016/j.advengsoft.2015.01.010” target=“_blank”>10.1016/j.advengsoft.2015.01.010</a>.
[64] S. Mirjalili, Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, <i>Neural Comput. Appl.</i>, <b>27</b> (2016), 1053-1073. doi: <a href=“http://dx.doi.org/10.1007/s00521-015-1920-1” target=“_blank”>10.1007/s00521-015-1920-1</a>.
[65] S, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowl.-Based Syst., 96, 120-133 (2016)
[66] H, A new meta-heuristic optimizer: Pathfinder algorithm, Appl. Soft Comput., 78, 545-568 (2019) · Zbl 1390.90590
[67] S, Autonomous Particles Groups for Particle Swarm Optimization, Arab. J. Sci. Eng., 39, 4683-4697 (2014) · Zbl 1390.90590
[68] L, Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems, Expert Syst. Appl., 37, 1676-1683 (2010)
[69] S. Mirjalili, S. Z. M. Hashim, A new hybrid PSOGSA algorithm for function optimization, <i>2010 International Conference on Computer and Information Application</i>, (2010), 374-377. doi: <a href=“http://dx.doi.org/10.1109/ICCIA.2010.6141614” target=“_blank”>10.1109/ICCIA.2010.6141614</a>.
[70] S. Rahnamayan, J. Jesuthasan, F. Bourennani, H. Salehinejad, G. F. Naterer, Computing opposition by involving entire population, <i>2014 IEEE Congress on Evolutionary Computation (CEC)</i>, (2014), 1800-1807. doi: <a href=“http://dx.doi.org/10.1109/CEC.2014.6900329” target=“_blank”>10.1109/CEC.2014.6900329</a>.
[71] M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, H. Faris, MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems, <i>Appl. Soft Comput.</i>, <b>97</b> (2020), 106761. doi: <a href=“http://dx.doi.org/10.1016/j.asoc.2020.106761” target=“_blank”>10.1016/j.asoc.2020.106761</a>.
[72] Y. Li, X. Lin, J. Liu, An Improved Gray Wolf Optimization Algorithm to Solve Engineering Problems, <i>Sustainability</i>, <b>13</b> (2021), 3208. doi: <a href=“http://dx.doi.org/10.3390/su13063208” target=“_blank”>10.3390/su13063208</a>.
[73] C. Tang, Y. Zhou, Q. Luo, Z. Tang, An enhanced pathfinder algorithm for engineering optimization problems, <i>Eng. Comput.</i>, (2021). doi: <a href=“http://dx.doi.org/10.1007/s00366-021-01286-x” target=“_blank”>10.1007/s00366-021-01286-x</a>.
[74] A, A self-adaptive Harris Hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection, Int. J. Mach. Learn. Cybern. (2021)
[75] A, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput., 29, 17-35 (2011)
[76] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A. H. Gandomi, The Arithmetic Optimization Algorithm, <i>Comput. Methods Appl. Mech. Eng.</i>, <b>376</b> (2020), 113609. doi: <a href=“http://dx.doi.org/10.1016/j.cma.2020.113609” target=“_blank”>10.1016/j.cma.2020.113609</a>. · Zbl 07340412
[77] S, A memory guided sine cosine algorithm for global optimization, Eng. Appl. Artif. Intell., 93, 103718 (2020)
[78] S, A memory-based Grey Wolf Optimizer for global optimization tasks, Appl. Soft Comput., 93, 106367 (2020)
[79] S, Grasshopper Optimisation Algorithm: Theory and application, Adv. Eng. Softw., 105, 30-47 (2017)
[80] V, An intensify Harris Hawks optimizer for numerical and engineering optimization problems, Appl. Soft Comput., 89, 106018 (2019)
[81] A, Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput., 13, 2592-2612 (2013)
[82] D, Preaching-inspired swarm intelligence algorithm and its applications, Knowl.-Based Syst., 211, 106552 (2020)
[83] C, An Enhanced Comprehensive Learning Particle Swarm Optimizer with the Elite-Based Dominance Scheme, Complexity, 2020, 1-24 (2020)
[84] L, Aquila Optimizer: A novel meta-heuristic optimization algorithm, Comput. Ind. Eng., 157, 107250 (2021)
[85] H, A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems, Appl. Math. Comput., 369, 124872 (2019) · Zbl 1433.90121
[86] E, Hybrid Nelder-Mead simplex search and particle swarm optimization for constrained engineering design problems, Expert Syst. Appl., 36, 3880-3886 (2009)
[87] M, Exploratory differential ant lion-based optimization, Expert Syst. Appl., 159, 113548 (2020)
[88] X, An improved evolution fruit fly optimization algorithm and its application, Neural Comput. Appl., 32, 9897-9914 (2019)
[89] B, Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems, Eng. Comput. (2021)
[90] S, A novel Random Walk Grey Wolf Optimizer, Swarm Evol. Comput., 44, 101-112 (2018)
[91] P, Passing vehicle search (PVS): A novel metaheuristic algorithm, Appl. Math. Model., 40, 3951-3978 (2016)
[92] W, Improved sine cosine algorithm combined with optimal neighborhood and quadratic interpolation strategy, Eng. Appl. Artif. Intell., 94, 103779 (2020)
[93] W, Multi-core sine cosine optimization: Methods and inclusive analysis, Expert Syst. Appl., 164, 113974 (2020)
[94] A, On the performance improvement of Butterfly Optimization approaches for global optimization and Feature Selection, PLOS ONE, 16, e0242612 (2021)
[95] K, TLMPA: Teaching-learning-based Marine Predators algorithm, AIMS Math., 6, 1395-1442 (2020)
[96] Z, Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems, Eng. Comput. (2020)
[97] N, Bare-Bones Based Sine Cosine Algorithm for global optimization, J. Comput. Sci., 47, 101219 (2020)
[98] L, Wind driven dragonfly algorithm for global optimization, Concurr. Comput. Pract. Exp., 33, 1-31 (2020)
[99] Y, Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique, Struct. Multidiscip. Optim., 37, 395-413 (2009)
[100] G, Flying Squirrel Optimizer (FSO): A Novel SI-Based Optimization Algorithm for Engineering Problems, Iranian Journal of Optimization, 11, 177-205 (2019)
[101] H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems, <i>Comput. Struct.</i>, <b>110-111</b> (2012), 151-166. doi: <a href=“http://dx.doi.org/10.1016/j.compstruc.2012.07.010” target=“_blank”>10.1016/j.compstruc.2012.07.010</a>.
[102] L, Optimisation and robustness for crashworthiness of side impact, Int. J. Veh. Des. - INT J VEH DES, 26, 348-360 (2001)
[103] B, Reliability-based design optimization for crashworthiness of vehicle side impact, Struct. Multidiscip. Optim., 26, 272-283 (2004)
[104] A, Mixed variable structural optimization using Firefly Algorithm, Comput. Struct., 89, 2325-2336 (2011)
[105] S. Sharma, A. K. Saha, G. Lohar, Optimization of weight and cost of cantilever retaining wall by a hybrid metaheuristic algorithm, <i>Eng. Comput.</i>, (2021). doi: <a href=“http://dx.doi.org/10.1007/s00366-021-01294-x” target=“_blank”>10.1007/s00366-021-01294-x</a>.
[106] M, Chaos-based Vortex Search algorithm for solving inverse kinematics problem of serial robot manipulators with offset wrist, Appl. Soft Comput., 89, 106074 (2020)
[107] S, A meta-heuristic proposal for inverse kinematics solution of 7-DOF serial robotic manipulator: quantum behaved particle swarm algorithm, Artif. Intell. Rev., 53, 949-964 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.