×

Formality of a higher-codimensional Swiss-cheese operad. (English) Zbl 1495.55005

The little disks operads \(\mathrm{D}_n\) are classical objects in algebraic topology that were first introduced to study iterated loop spaces. The elements of \(\mathrm{D}_n(k)\) consist of configurations of \(k\) disks inside the unit \(n\)-disk \({\mathbb{D}}^n\). An important property of \(\mathrm{D}_n\) is its formality. The Swiss-cheese operads \(\mathrm{SC}_n\), \(n\geq 2\), are relative versions of the little disks operads. Unlike the little disks operads, the Swiss-cheese operads are not formal.
The author introduces higher-codimensional variants of the Swiss-cheese operads, \(\mathrm{CD}_{mn}\), where \(n-2\geq m\geq 1\), called the complementarily constrained disks operads. On the level of homology, these operads encode actions of \(\mathrm{D}_n\)-algebras on \(\mathrm{D}_m\)-algebras by central derivations. The elements of \(\mathrm{CD}_{mn}(k,l)\) are given by configurations of \(k\) disks centered on \({\mathbb{D}}^m\subset {\mathbb{D}}^n\) and \(l\) disks entirely contained in the complement \({\mathbb{D}}^n\setminus {\mathbb{D}}^m\).
The main result of the paper states that \(\mathrm{CD}_{mn}\) is formal over \({\mathbb{R}}\). The proof is inspired by the proofs of the formality of the little disks operad by M. Kontsevich [Lett. Math. Phys. 48, No. 1, 35–72 (1999; Zbl 0945.18008)] and by P. Lambrechts and I. Volić [Formality of the little \(N\)-disks operad. Providence, RI: American Mathematical Society (AMS) (2014; Zbl 1308.55006)]. The motivation for the article comes from the study of the configuration spaces of the complement \(N\setminus M\), where \(N\) is a closed \(n\)-manifold and \(M\) is a closed \(m\)-submanifold of \(N\) of codimension \(\geq 2\).

MSC:

55P48 Loop space machines and operads in algebraic topology
55R80 Discriminantal varieties and configuration spaces in algebraic topology

References:

[1] Arnold, V. I., The cohomology ring of the group of dyed braids, Mat. Zametki, 5, 227, 1969; Arnold, V. I., The cohomology ring of the group of dyed braids, Mat. Zametki, 5, 227, 1969
[2] Arone, Gregory; Turchin, Victor, Graph-complexes computing the rational homotopy of high dimensional analogues of spaces of long knots, Ann. Inst. Fourier (Grenoble), 65, 1, 1, 2015; Arone, Gregory; Turchin, Victor, Graph-complexes computing the rational homotopy of high dimensional analogues of spaces of long knots, Ann. Inst. Fourier (Grenoble), 65, 1, 1, 2015 · Zbl 1329.57035 · doi:10.5802/aif.2924
[3] Axelrod, Scott; Singer, I. M., Chern-Simons perturbation theory, II, J. Differential Geom., 39, 1, 173, 1994; Axelrod, Scott; Singer, I. M., Chern-Simons perturbation theory, II, J. Differential Geom., 39, 1, 173, 1994 · Zbl 0827.53057
[4] Ayala, David; Francis, John; Tanaka, Hiro Lee, Factorization homology of stratified spaces, Selecta Math., 23, 1, 293, 2017; Ayala, David; Francis, John; Tanaka, Hiro Lee, Factorization homology of stratified spaces, Selecta Math., 23, 1, 293, 2017 · Zbl 1365.57037 · doi:10.1007/s00029-016-0242-1
[5] Boardman, J. M.; Vogt, R. M., Homotopy-everything H-spaces, Bull. Amer. Math. Soc., 74, 1117, 1968; Boardman, J. M.; Vogt, R. M., Homotopy-everything H-spaces, Bull. Amer. Math. Soc., 74, 1117, 1968 · Zbl 0165.26204 · doi:10.1090/S0002-9904-1968-12070-1
[6] Cohen, Frederick R., The homology of 𝒞n+1 spaces, n ≥ 0, The homology of iterated loop spaces. Lecture Notes in Math., 533, 207, 1976; Cohen, Frederick R., The homology of 𝒞n+1 spaces, n ≥ 0, The homology of iterated loop spaces. Lecture Notes in Math., 533, 207, 1976 · Zbl 0334.55009 · doi:10.1007/BFb0080467
[7] De Concini, C.; Procesi, C., Wonderful models of subspace arrangements, Selecta Math., 1, 3, 459, 1995; De Concini, C.; Procesi, C., Wonderful models of subspace arrangements, Selecta Math., 1, 3, 459, 1995 · Zbl 0842.14038 · doi:10.1007/BF01589496
[8] Dolgushev, Vasily A.; Rogers, Christopher L., A version of the Goldman-Millson theorem for filtered L∞-algebras, J. Algebra, 430, 260, 2015; Dolgushev, Vasily A.; Rogers, Christopher L., A version of the Goldman-Millson theorem for filtered L∞-algebras, J. Algebra, 430, 260, 2015 · Zbl 1327.17019 · doi:10.1016/j.jalgebra.2015.01.032
[9] Dolgushev, Vasily; Willwacher, Thomas, Operadic twisting—with an application to Deligne’s conjecture, J. Pure Appl. Algebra, 219, 5, 1349, 2015; Dolgushev, Vasily; Willwacher, Thomas, Operadic twisting—with an application to Deligne’s conjecture, J. Pure Appl. Algebra, 219, 5, 1349, 2015 · Zbl 1305.18032 · doi:10.1016/j.jpaa.2014.06.010
[10] Ducoulombier, Julien, Swiss-cheese action on the totalization of action-operads, Algebr. Geom. Topol., 16, 3, 1683, 2016; Ducoulombier, Julien, Swiss-cheese action on the totalization of action-operads, Algebr. Geom. Topol., 16, 3, 1683, 2016 · Zbl 1355.55007 · doi:10.2140/agt.2016.16.1683
[11] Fresse, Benoit, Théorie des opérades de Koszul et homologie des algèbres de Poisson, Ann. Math. Blaise Pascal, 13, 2, 237, 2006; Fresse, Benoit, Théorie des opérades de Koszul et homologie des algèbres de Poisson, Ann. Math. Blaise Pascal, 13, 2, 237, 2006 · Zbl 1141.55006 · doi:10.5802/ambp.219
[12] Fresse, Benoit, Homotopy of operads and Grothendieck-Teichmüller groups, II : The applications of (rational) homotopy theory methods. Mathematical Surveys and Monographs, 217, 2017; Fresse, Benoit, Homotopy of operads and Grothendieck-Teichmüller groups, II : The applications of (rational) homotopy theory methods. Mathematical Surveys and Monographs, 217, 2017 · Zbl 1375.55007 · doi:10.1090/surv/217.2
[13] Fresse, Benoit, The extended rational homotopy theory of operads, Georgian Math. J., 25, 4, 493, 2018; Fresse, Benoit, The extended rational homotopy theory of operads, Georgian Math. J., 25, 4, 493, 2018 · Zbl 1408.18017 · doi:10.1515/gmj-2018-0061
[14] Fresse, Benoit, Little discs operads, graph complexes and Grothendieck-Teichmüller groups, Handbook of homotopy theory, 405, 2020; Fresse, Benoit, Little discs operads, graph complexes and Grothendieck-Teichmüller groups, Handbook of homotopy theory, 405, 2020 · Zbl 1476.55030
[15] Fresse, Benoit; Turchin, Victor; Willwacher, Thomas, The homotopy theory of operad subcategories, J. Homotopy Relat. Struct., 13, 4, 689, 2018; Fresse, Benoit; Turchin, Victor; Willwacher, Thomas, The homotopy theory of operad subcategories, J. Homotopy Relat. Struct., 13, 4, 689, 2018 · Zbl 1405.18015 · doi:10.1007/s40062-018-0198-2
[16] Fresse, Benoit; Willwacher, Thomas, The intrinsic formality of En-operads, J. Eur. Math. Soc., 22, 7, 2047, 2020; Fresse, Benoit; Willwacher, Thomas, The intrinsic formality of En-operads, J. Eur. Math. Soc., 22, 7, 2047, 2020 · Zbl 1445.18014 · doi:10.4171/JEMS/961
[17] Fulton, William; MacPherson, Robert, A compactification of configuration spaces, Ann. of Math., 139, 1, 183, 1994; Fulton, William; MacPherson, Robert, A compactification of configuration spaces, Ann. of Math., 139, 1, 183, 1994 · Zbl 0820.14037 · doi:10.2307/2946631
[18] Getzler, Ezra, Lie theory for nilpotent L∞-algebras, Ann. of Math., 170, 1, 271, 2009; Getzler, Ezra, Lie theory for nilpotent L∞-algebras, Ann. of Math., 170, 1, 271, 2009 · Zbl 1246.17025 · doi:10.4007/annals.2009.170.271
[19] Goldman, William M.; Millson, John J., The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math., 67, 43, 1988; Goldman, William M.; Millson, John J., The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math., 67, 43, 1988 · Zbl 0678.53059 · doi:10.1007/BF02699127
[20] Goresky, Mark; MacPherson, Robert, Stratified Morse theory. Ergeb. Math. Grenzgeb., 14, 1988; Goresky, Mark; MacPherson, Robert, Stratified Morse theory. Ergeb. Math. Grenzgeb., 14, 1988 · Zbl 0639.14012 · doi:10.1007/978-3-642-71714-7
[21] Hardt, Robert; Lambrechts, Pascal; Turchin, Victor; Volić, Ismar, Real homotopy theory of semi-algebraic sets, Algebr. Geom. Topol., 11, 5, 2477, 2011; Hardt, Robert; Lambrechts, Pascal; Turchin, Victor; Volić, Ismar, Real homotopy theory of semi-algebraic sets, Algebr. Geom. Topol., 11, 5, 2477, 2011 · Zbl 1254.14066 · doi:10.2140/agt.2011.11.2477
[22] Hoefel, Eduardo; Livernet, Muriel, On the spectral sequence of the Swiss-cheese operad, Algebr. Geom. Topol., 13, 4, 2039, 2013; Hoefel, Eduardo; Livernet, Muriel, On the spectral sequence of the Swiss-cheese operad, Algebr. Geom. Topol., 13, 4, 2039, 2013 · Zbl 1272.18006 · doi:10.2140/agt.2013.13.2039
[23] Hoefel, Eduardo; Livernet, Muriel; Stasheff, Jim, A∞-actions and recognition of relative loop spaces, Topology Appl., 206, 126, 2016; Hoefel, Eduardo; Livernet, Muriel; Stasheff, Jim, A∞-actions and recognition of relative loop spaces, Topology Appl., 206, 126, 2016 · Zbl 1368.55003 · doi:10.1016/j.topol.2016.03.023
[24] Idrissi, Najib, The Lambrechts-Stanley model of configuration spaces, Invent. Math., 216, 1, 1, 2019; Idrissi, Najib, The Lambrechts-Stanley model of configuration spaces, Invent. Math., 216, 1, 1, 2019 · Zbl 1422.55031 · doi:10.1007/s00222-018-0842-9
[25] Kontsevich, Maxim, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics, II. Progr. Math., 120, 97, 1994; Kontsevich, Maxim, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics, II. Progr. Math., 120, 97, 1994 · Zbl 0872.57001 · doi:10.1007/978-3-0348-9112-7_5
[26] Kontsevich, Maxim, Operads and motives in deformation quantization, Lett. Math. Phys., 48, 1, 35, 1999; Kontsevich, Maxim, Operads and motives in deformation quantization, Lett. Math. Phys., 48, 1, 35, 1999 · Zbl 0945.18008 · doi:10.1023/A:1007555725247
[27] Kontsevich, Maxim, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66, 3, 157, 2003; Kontsevich, Maxim, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66, 3, 157, 2003 · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[28] Lambrechts, Pascal; Volić, Ismar, Formality of the little N-disks operad. Mem. Amer. Math. Soc., 1079, 2014; Lambrechts, Pascal; Volić, Ismar, Formality of the little N-disks operad. Mem. Amer. Math. Soc., 1079, 2014 · Zbl 1308.55006
[29] Livernet, Muriel, Non-formality of the Swiss-cheese operad, J. Topol., 8, 4, 1156, 2015; Livernet, Muriel, Non-formality of the Swiss-cheese operad, J. Topol., 8, 4, 1156, 2015 · Zbl 1333.55009 · doi:10.1112/jtopol/jtv018
[30] Loday, Jean-Louis; Vallette, Bruno, Algebraic operads. Grundl. Math. Wissen., 346, 2012; Loday, Jean-Louis; Vallette, Bruno, Algebraic operads. Grundl. Math. Wissen., 346, 2012 · Zbl 1260.18001 · doi:10.1007/978-3-642-30362-3
[31] Markl, Martin, A compactification of the real configuration space as an operadic completion, J. Algebra, 215, 1, 185, 1999; Markl, Martin, A compactification of the real configuration space as an operadic completion, J. Algebra, 215, 1, 185, 1999 · Zbl 0949.58009 · doi:10.1006/jabr.1998.7709
[32] May, J. P., The geometry of iterated loop spaces. Lecture Notes in Math., 271, 1972; May, J. P., The geometry of iterated loop spaces. Lecture Notes in Math., 271, 1972 · Zbl 0244.55009 · doi:10.1007/BFb0067491
[33] Petersen, Dan, Minimal models, GT-action and formality of the little disk operad, Selecta Math., 20, 3, 817, 2014; Petersen, Dan, Minimal models, GT-action and formality of the little disk operad, Selecta Math., 20, 3, 817, 2014 · Zbl 1312.55008 · doi:10.1007/s00029-013-0135-5
[34] Poirier, Sylvain, The configuration space integral for links in ℝ3, Algebr. Geom. Topol., 2, 1001, 2002; Poirier, Sylvain, The configuration space integral for links in ℝ3, Algebr. Geom. Topol., 2, 1001, 2002 · Zbl 1024.57015 · doi:10.2140/agt.2002.2.1001
[35] Polishchuk, Alexander; Positselski, Leonid, Quadratic algebras. University Lecture Series, 37, 2005; Polishchuk, Alexander; Positselski, Leonid, Quadratic algebras. University Lecture Series, 37, 2005 · Zbl 1145.16009 · doi:10.1090/ulect/037
[36] Salvatore, Paolo, Configuration spaces with summable labels, Cohomological methods in homotopy theory. Progr. Math., 196, 375, 2001; Salvatore, Paolo, Configuration spaces with summable labels, Cohomological methods in homotopy theory. Progr. Math., 196, 375, 2001 · Zbl 1034.55007 · doi:10.1007/978-3-0348-8312-2_23
[37] Shoikhet, Boris, An L∞ algebra structure on polyvector fields, Selecta Math., 24, 2, 1691, 2018; Shoikhet, Boris, An L∞ algebra structure on polyvector fields, Selecta Math., 24, 2, 1691, 2018 · Zbl 1393.53092 · doi:10.1007/s00029-017-0382-y
[38] Sinha, Dev P., Manifold-theoretic compactifications of configuration spaces, Selecta Math., 10, 3, 391, 2004; Sinha, Dev P., Manifold-theoretic compactifications of configuration spaces, Selecta Math., 10, 3, 391, 2004 · Zbl 1061.55013 · doi:10.1007/s00029-004-0381-7
[39] Sinha, Dev P., The (non-equivariant) homology of the little disks operad, OPERADS 2009. Sémin. Congr., 26, 253, 2013; Sinha, Dev P., The (non-equivariant) homology of the little disks operad, OPERADS 2009. Sémin. Congr., 26, 253, 2013 · Zbl 1277.18012
[40] Sinha, Dev; Walter, Benjamin, Lie coalgebras and rational homotopy theory, I : Graph coalgebras, Homology Homotopy Appl., 13, 2, 263, 2011; Sinha, Dev; Walter, Benjamin, Lie coalgebras and rational homotopy theory, I : Graph coalgebras, Homology Homotopy Appl., 13, 2, 263, 2011 · Zbl 1231.55009 · doi:10.4310/HHA.2011.v13.n2.a16
[41] Tamarkin, Dmitry E., Formality of chain operad of little discs, Lett. Math. Phys., 66, 1-2, 65, 2003; Tamarkin, Dmitry E., Formality of chain operad of little discs, Lett. Math. Phys., 66, 1-2, 65, 2003 · Zbl 1048.18007 · doi:10.1023/B:MATH.0000017651.12703.a1
[42] Turchin, Victor; Willwacher, Thomas, Relative (non-)formality of the little cubes operads and the algebraic Cerf lemma, Amer. J. Math., 140, 2, 277, 2018; Turchin, Victor; Willwacher, Thomas, Relative (non-)formality of the little cubes operads and the algebraic Cerf lemma, Amer. J. Math., 140, 2, 277, 2018 · Zbl 1428.18033 · doi:10.1353/ajm.2018.0006
[43] Vasconcellos Vieira, Renato, Relative recognition principle, Algebr. Geom. Topol., 20, 3, 1431, 2020; Vasconcellos Vieira, Renato, Relative recognition principle, Algebr. Geom. Topol., 20, 3, 1431, 2020 · Zbl 1441.55007 · doi:10.2140/agt.2020.20.1431
[44] Voronov, Alexander A., The Swiss-cheese operad, Homotopy invariant algebraic structures. Contemp. Math., 239, 365, 1999; Voronov, Alexander A., The Swiss-cheese operad, Homotopy invariant algebraic structures. Contemp. Math., 239, 365, 1999 · Zbl 0946.55005 · doi:10.1090/conm/239/03610
[45] Willwacher, Thomas, M Kontsevich’s graph complex and the Grothendieck-Teichmüller Lie algebra, Invent. Math., 200, 3, 671, 2015; Willwacher, Thomas, M Kontsevich’s graph complex and the Grothendieck-Teichmüller Lie algebra, Invent. Math., 200, 3, 671, 2015 · Zbl 1394.17044 · doi:10.1007/s00222-014-0528-x
[46] Willwacher, Thomas, The homotopy braces formality morphism, Duke Math. J., 165, 10, 1815, 2016; Willwacher, Thomas, The homotopy braces formality morphism, Duke Math. J., 165, 10, 1815, 2016 · Zbl 1346.53077 · doi:10.1215/00127094-3450644
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.