# zbMATH — the first resource for mathematics

La queste del Saint $$\text{Gr}_ a(\text{AL})$$: A computational approach to local algebra. (English) Zbl 0752.13016
Let $$P=k[x_ 1,\ldots,x_ n]$$ be the polynomial ring over a field $$k$$ and $$<$$ be an ordering of the set of monomials of $$P$$ compatible with its semigroup structure. For a power series $$f\in\hat P=k[[x_ 1,\ldots,x_ n]]$$ let $$L(f)$$ be the leading monomial of $$f$$ with respect to the ordering. For an ideal $$I\subseteq\text{Loc}(P):=\{(1+g)^{-1}\cdot f\mid L(g)<1,\;f,g\in P\}$$ let $$L(I)$$ be the ideal generated by all leading monomials of elements of $$I$$. A set $$\{f_ 1,\ldots,f_ m\}$$ of elements of $$I$$ is called a standard base of $$I$$ if $$\{L(f_ 1),\ldots,L(f_ m)\}$$ generate $$L(I)$$. If $$<$$ is a well ordering then Buchberger’s algorithm computes a standard base in $$P$$. — The author generalized this algorithm for a larger class of orderings. His tangent cone algorithm allows to compute standard bases in the local situation, i.e. for instance if $$\text{Loc}(P)=k[x_ 1,\ldots,x_ n]_{(x_ 1,\ldots,x_ n)}$$, and it is therefore a very important tool for local algebraic geometry. A recent implementation of this algorithm is included in SINGULAR (developed at the Humboldt-University in Berlin and the University of Kaiserslautern).
The author gives a survey about the tangent cone algorithm and several applications in local algebra. He also describes a computational model for the ring of algebraic power series which gives effective versions of the Weierstraß preparation theorem and the Noether normalization lemma.
Reviewer: G.Pfister (Berlin)

##### MSC:
 13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases) 13F20 Polynomial rings and ideals; rings of integer-valued polynomials 14Q99 Computational aspects in algebraic geometry
##### Keywords:
standard base; tangent cone algorithm
SINGULAR
Full Text:
##### References:
 [1] Alonso, M.E.; Luengo, I.; Raimondo, M., An algorithm on quasi-ordinary polynomials, () · Zbl 0692.13011 [2] Alonso, M.E.; Mora, T.; Raimondo, M., Computing with algebraic series, Proceedings ISSAC, 89, (1989) [3] M.E. Alonso, T. Mora and M. Raimondo, A computational model for algebraic power series, J. Pure Appl. Algebra, to appear. · Zbl 0749.13017 [4] Bayer, D., The division algorithm and the Hilbert scheme, () [5] Bayer, D.; Stillman, M., Communication at COCOAII, (1989) [6] Carrà, G., Some upper bounds for the multiplicity of an autoreduced subset of Nm and their application, () · Zbl 0614.68034 [7] Dickenstein, A.; Fitchas, N.; Giusti, M.; Sessa, A., The membership problem for unmixed polynomial ideals is solvable in single exponential time, Discrete appl. math., 33, 73-94, (1991) · Zbl 0747.13018 [8] Duval, D., Diverses questions relatives au calcul formel avec des nombres algébriques, () [9] Furukawa, A.; Kobayashi, H.; Sasaki, T., Gröbner bases of ideals of convergent power series, (1985) [10] Galligo, A., A propos du théorème de préparation de Weierstrass, (), 543-579 [11] Galligo, A.; Traverso, C., Practical determination of the dimension of an algebraic variety, (), 46-52 [12] Gianni, P.; Trager, B.; Zacharias, G., Gröbner bases and primary decomposition of polynomial ideals, J. symbolic comput., 6, 149-168, (1988) · Zbl 0667.13008 [13] Grieco, M.; Zucchetti, B., Communication at AAECC-7, (1989) [14] Gröbner, W., Algebraische geometrie, (1968), Bibliographiches Institut Mannheim · JFM 64.1320.02 [15] Kandrateva, M.V.; Pankratev, E.V., A recursive algorithm for computation of the Hilbert polynomial, (), 365-375 [16] Kredel, H.; Weispfenning, V., Computing dimension and independent sets for polynomial ideals, J. symbolic comput., 6, 231-248, (1988) · Zbl 0665.68024 [17] Lazard, D., Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations, (), 146-156 [18] Logar, A., A computational proof of the Noether normalization lemma, (), 259-273 [19] Luengo, I.; Pfister, G., Normal forms and moduli spaces of curve singularities with semigroup 〈2p, 2q, 2pq+d〉, (1988), Universidad Complutense Madrid, Preprint [20] Möller, H.M.; Mora, F., The computation of the Hilbert function, (), 157-167 [21] Möller, H.M.; Mora, F., New constructive methods in classical ideal theory, J. algebra, 100, (1986) · Zbl 0621.13007 [22] Mora, F., An algorithm to compute the equations of tangent cones, (), 158-165 [23] Mora, F., A constructive characterization of standard bases, Boll. un. mat. ital., D 2, 41-50, (1983) · Zbl 0619.13010 [24] Mora, F., An algorithmic approach to local rings, (), 518-525 [25] T. Mora, G. Pfister and C. Traverso, An introduction to the tangent cone algorithm, in: C. Hoffman, ed., Issues in Non-Linear Geometry and Robotics (JAI Press, Greenwidge, CT, to appear). [26] Pfister, G.; Schönemann, H., Singularities with exact poincarécomplex but not quasihomogeneous, () · Zbl 0708.14018 [27] Robbiano, L., Coni tangenti a singolaritàrazionali, Atti conv. geom. alg. firenze, (1981) [28] Robbiano, L., On the theory of graded structures, J. symbolic comput., 2, 139-170, (1986) · Zbl 0609.13007 [29] Spangher, W., On the computation of the Hilbert-Samuel series and multiplicity, (), 407-414 [30] Walker, R.J., Algebraic curves, (1978), Springer Berlin [31] Zariski, O.; Samuel, P., Commutative algebra, (1985), Van Nostrand Reinhold New York · Zbl 0121.27901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.