zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Rational points on elliptic curves. (English) Zbl 0752.14034
Undergraduate Texts in Mathematics. New York: Springer-Verlag. x, 281 p. (1992).
The book gives a good introduction for students which are interested in Diophantine equations and arithmetic geometry. It is based on lectures of J. Tate from 1961. It contains a lot of exercises. Often further developments and applications are explained, for instance Lenstra’s algorithm for factorisation of integers using elliptic curves. The book starts with the geometry and group structure of elliptic curves. It contains the Nagell-Lutz theorem describing points if finite order, the Mordell-Weil theorem on the finite generation of the group of rational points, the Thue-Siegel theorem on the finiteness of the set of integer points. Also points over finite fields are considered. --- At the end one finds complex multiplication and Galois representations associated to torsion points. The algebraic geometry needed for the purpose of the book (for instance Bézout’s theorem) is presented in an appendix.

11G05Elliptic curves over global fields
11-01Textbooks (number theory)
14-01Textbooks (algebraic geometry)
11G15Complex multiplication and moduli of abelian varieties
11D25Cubic and quartic diophantine equations
14G05Rational points
14G15Finite ground fields
14H52Elliptic curves