## Lower semicontinuity of the attractor for a singularly perturbed hyperbolic equation.(English)Zbl 0752.35034

Assume $$\varepsilon$$ is a small positive parameter, $$\Omega$$ is a bounded, smooth domain or a convex polyhedral domain in $$\mathbb{R}^ n$$, $$n=1,2,3$$, and consider the following problem: $\varepsilon u_{tt}+u_ t-\Delta u=-f(u)-g\quad\text{ in }\Omega\times(0,\infty),\quad u=0\quad\text{ on }\partial\Omega;$
$u(0,x)=u_ 0(x),\quad u_ t(0,x)=u_ 1(x),\tag{1}$ where $$g\in L^ 2(\Omega)$$, $$(u_ 0,u_ 1)\in X_ 0\equiv H^ 1_ 0(\Omega)\times L^ 2(\Omega)$$, and $$f\in L^ 2(\mathbb{R},\mathbb{R})$$, $$\;\varlimsup_{| y|\to\infty}(-f(y)/y)\leq 0$$, and, for $$n\geq 2$$, there is a constant $$c_ 0>0$$ such that $$| f''(y)|\leq c_ 0(| y|^ \gamma+1)$$ for $$y\in\mathbb{R}$$, where $$0\leq\gamma<\infty$$ if $$n=2$$, and $$0\leq\gamma\leq 1$$ if $$n=3$$.
The authors obtain some relationships between the solutions of the hyperbolic problem (1) and the limit parabolic problem $$(\varepsilon=0)$$ $u_ t-\Delta u=-f(u)-g\text{ in }\Omega\times(0,\infty),\quad u=0\text{ on }\partial\Omega,\quad u(0,x)=u_ 0(x).\tag{2}$ More precisely under certain conditions on $$f$$, the hyperbolic equation given by (1) has a global attractor $$A_ \varepsilon$$ in $$H^ 1_ 0(\Omega)\times L^ 2(\Omega)$$. For $$\varepsilon=0$$, the parabolic equation also has a global attractor which can be naturally embedded into a compact set $$A_ 0$$ in $$H^ 1_ 0(\Omega)\times L^ 2(\Omega)$$.
If all of the equilibrium points of the parabolic equation are hyperbolic, the authors prove that the sets $$A_ \varepsilon$$ are lower semicontinuous at $$\varepsilon=0$$. Furthermore, an estimate of the symmetric distance between $$A_ 0$$ and $$A_ \varepsilon$$ is given.

### MSC:

 35L55 Higher-order hyperbolic systems 37C70 Attractors and repellers of smooth dynamical systems and their topological structure 35B25 Singular perturbations in context of PDEs 58J37 Perturbations of PDEs on manifolds; asymptotics

### Keywords:

limit parabolic equation
Full Text:

### References:

 [1] Babin, A. V., and Vishik, M.I. (1983). Regular attractors of semigroups of evolutionary equations,J. Math. Pures Appl. 62, 441-491. · Zbl 0565.47045 [2] Babin, A. V., and Vishik, M. I. (1985).Attracteurs maximaux dans les équations aux dérivées partielles (Collége de France Séminaire, 1984), Pitman, Boston. [3] Babin., A. V., and Vishik, M. I. (1987). Uniform asymptotic solutions of a singularly perturbed evolutionary equation,Uspekhi Mat. Nauk 42, 231-232 [in Russian]. [4] Billotti, J., and LaSalle, J. P. (1971). Periodic dissipative processes,Bull. Am. Math. Soc. (N.S.) 6, 1082-1089. · Zbl 0274.34061 [5] Ghidaglia, J. M., and Témam, R. (1987). Attractors for damped hyperbolic equations,J. Math. Pures Appl. 66, 273-319. · Zbl 0572.35071 [6] Hale, J. K. (1980).Ordinary Differential Equations, 2nd ed., Kreiger. · Zbl 0433.34003 [7] Hale, J. K. (1988).Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, Rhode Island. · Zbl 0642.58013 [8] Hale, J. K., and Raugel, G. (1988). Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation,J. Diff. Eq. 73, 197-214. · Zbl 0666.35012 [9] Hale, J. K., and Raugel, G. (to appear). Lower semicontinuity of the attractor for gradient systems,Annali Mat. Pura Appl., to appear. · Zbl 0752.35034 [10] Hale, J. K., and Scheurle, J. (1985). Smoothness of bounded solutions of nonlinear evolution equations,J. Diff. Eq. 56, 142-163. · Zbl 0541.34020 [11] Hale, J. K., Lin, X.-B., and Raugel, G. (1988). Upper semicontinuity of attractors and partial differential equations,Math. Comp. 50, 89-123. · Zbl 0666.35013 [12] Haraux, A. (1985).Two Remarks on Dissipative Hyperbolic Systems (Collége de France Séminaire, 1984), Pitman, Boston. [13] Henry, D. (1981).Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin. · Zbl 0456.35001 [14] Henry, D. (1986). Generic properties of equilibrium solutions by perturbation of the boundary, Preprint, Centre de Recerca Matematica Institut d’Estudis Catalans, 37. [15] Lions, J. L. (1973).Perturbations singulières dans les problémes aux limites et en contrôle optimal, Springer-Verlag, Berlin. · Zbl 0268.49001 [16] Lions, J. L., and Magenes, E. (1968).Problèmes aux limites nonhomogènes et applications, Dunod, Paris. · Zbl 0165.10801 [17] Mora, X. (1987). Finite dimensional attracting invariant manifolds for damped semilinear wave equations. In Diaz, J. L., and Lions, P. L. (eds.),Nonlinear Partial Differential Equations. II, Longman, Essex, England. · Zbl 0642.35061 [18] Mora, I., and Sola-Morales, J. (1989). The singular limit dynamics of semilinear damped wave equations,J. Diff. Eq. 88, 262-307. · Zbl 0699.35177 [19] Palis, J., and de Melo, W. (1982).Geometric Theory of Dynamical Systems, Springer-Verlag, Berlin. · Zbl 0491.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.