Geodesic stars in random geometry. (English) Zbl 1526.60016

A geodesic in a metric space \((E, d)\) is a continuous path \((\gamma(t))_{t\in[0,\delta]}\), where \(\delta > 0\), such that \(d(\gamma(s), \gamma(t)) = |s - t|\) for every \(s, t \in [0, \delta]\). For every \(t \in(0, \delta)\), \(\gamma(t)\) is an interior point of the geodesic (whereas \(\gamma(0)\) and \(\gamma(\delta)\) are its endpoints). If \(m\ge 1\) is an integer, then a point \(x\) is a geodesic star with \(m\) arms (in short, an \(m\)-geodesic star) if there exist \(\delta > 0\) and \(m\) geodesics \((\gamma_1(t))_{t\in[0,\delta]}, \dots, (\gamma_m(t))_{t\in[0,\delta]}\) such that \(\gamma_1(0) = \gamma_2(0) = \dots = \gamma_m(0) = x\) and the sets \(\{\gamma_j(t): t \in (0, \delta]\}\), for \(j \in \{1, \dots, m\}\), are disjoint. If \((E, d)\) is a geodesic space, any pair of distinct points is connected by a (possibly not unique) geodesic, and it is then immediate that every point is a \(1\)-geodesic star.
The main result of the paper is the following statement.
Theorem 1. Let \((m_{\infty}, D)\) denote the Brownian sphere. For every integer \(m\in \{1, 2, 3, 4\}\), let \({\mathcal{E}}_m\) be the set of all \(m\)-geodesic stars in \((m_\infty, D)\). Then, the Hausdorff dimension of \({\mathcal{E}}_m\) is a.s. equal to \(5-m\).
The upper bound \(\dim({\mathcal{E}}_m) \leq 5 - m\) has been obtained in [J. Miller and W. Qian, “Geodesics in the Brownian map: Strong confluence and geometric structure”, Preprint, arXiv:2008.02242]. So the contribution of the present work is to prove the corresponding lower bound. Note that \(m\)-geodesic stars in the Brownian sphere were first discussed in [G. Miermont, Acta Math. 210, No. 2, 319–401 (2013; Zbl 1278.60124)]. The Brownian sphere is a geodesic space, and thus \({\mathcal{E}}_1 = m_{\infty}\) so that, in the case \(m = 1\), the result follows from the known fact [J.-F. Le Gall, Invent. Math. 169, No. 3, 621–670 (2007; Zbl 1132.60013)] that \(\dim(m_{\infty}) = 4\). Any interior point of a geodesic is a \(2\)-geodesic star, and, therefore, \({\mathcal{E}}_2\) contains the set of all interior points of all geodesics. However, the authors of [Miller and Qian, loc. cit.] proved that the Hausdorff dimension of the latter set is 1 (it is obviously greater than or equal to 1), thus confirming a conjecture from [O. Angel et al., Ann. Probab. 45, No. 5, 3451–3479 (2017; Zbl 1407.60018)]. Since \(\dim({\mathcal{E}}_2) =3\), this implies, that typical \(2\)-geodesic stars are not interior points of geodesics.
Open Problem. Prove or disprove the existence of \(5\)-geodesic stars in the Brownian map.
The paper is organized as follows. Section 2 is devoted to a number of preliminaries, including the Brownian snake construction of the Brownian sphere as a measure metric space with two distinguished points denoted by \(x_*\) and \(x_0\), and a discussion of the symmetry properties of the Brownian sphere, which, roughly speaking, say that \(x_*\) and \(x_0\) play the same role as two points chosen independently according to the (normalized) volume measure. Theorem 8 of Section 3 shows that the hull of radius \(r>0\) centered at \(x_*\) (relative to \(x_0\)) is independent of its complement conditionally on its boundary size, and the complement itself is a Brownian disk; this is, in fact, an analog of a result proved in [J.-F. Le Gall and A. Riera, Probab. Theory Relat. Fields 181, No. 1–3, 571–645 (2021; Zbl 1480.60023)] for the Brownian plane. An important notion of Section 4 is a slice which separates two successive disjoint geodesics from the hull boundary to the ball of radius \(\varepsilon\). Section 5 uses the results of Section 3 to derive the key estimate in Lemma 15. Section 6 then gives the proof of Theorem 1 along the lines of the preceding discussion. The Appendix contains the proofs of a couple of technical lemmas, including the strong coupling between the Brownian plane and the Brownian sphere that is used to justify the zero-one law argument.


60D05 Geometric probability and stochastic geometry
53C22 Geodesics in global differential geometry
53C65 Integral geometry
Full Text: DOI arXiv


[1] ABRAHAM, C. (2016). Rescaled bipartite planar maps converge to the Brownian map. Ann. Inst. Henri Poincaré Probab. Stat. 52 575-595. · Zbl 1375.60034 · doi:10.1214/14-AIHP657
[2] Abraham, C. and Le Gall, J.-F. (2018). Excursion theory for Brownian motion indexed by the Brownian tree. J. Eur. Math. Soc. (JEMS) 20 2951-3016. · Zbl 1501.60046 · doi:10.4171/JEMS/827
[3] ABRAHAM, R., DELMAS, J.-F. and HOSCHEIT, P. (2013). A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces. Electron. J. Probab. 18 no. 14, 21. · Zbl 1285.60004 · doi:10.1214/EJP.v18-2116
[4] ADDARIO-BERRY, L. and ALBENQUE, M. (2017). The scaling limit of random simple triangulations and random simple quadrangulations. Ann. Probab. 45 2767-2825. · Zbl 1417.60022 · doi:10.1214/16-AOP1124
[5] ANGEL, O., KOLESNIK, B. and MIERMONT, G. (2017). Stability of geodesics in the Brownian map. Ann. Probab. 45 3451-3479. · Zbl 1407.60018 · doi:10.1214/16-AOP1140
[6] BETTINELLI, J., JACOB, E. and MIERMONT, G. (2014). The scaling limit of uniform random plane maps, via the Ambjørn-Budd bijection. Electron. J. Probab. 19 no. 74, 16. · Zbl 1320.60088 · doi:10.1214/EJP.v19-3213
[7] Bettinelli, J. and Miermont, G. (2017). Compact Brownian surfaces I: Brownian disks. Probab. Theory Related Fields 167 555-614. · Zbl 1373.60062 · doi:10.1007/s00440-016-0752-y
[8] Curien, N. and Le Gall, J.-F. (2014). The Brownian plane. J. Theoret. Probab. 27 1249-1291. · Zbl 1305.05208 · doi:10.1007/s10959-013-0485-0
[9] CURIEN, N. and LE GALL, J.-F. (2016). The hull process of the Brownian plane. Probab. Theory Related Fields 166 187-231. · Zbl 1347.05226 · doi:10.1007/s00440-015-0652-6
[10] GWYNNE, E. Geodesic networks in Liouville quantum gravity surfaces. Preprint. Available at arXiv:2010.11260. · Zbl 1489.60016
[11] GWYNNE, E. and MILLER, J. (2017). Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology. Electron. J. Probab. 22 Paper No. 84, 47. · Zbl 1378.60030 · doi:10.1214/17-EJP102
[12] Gwynne, E. and Miller, J. (2020). Confluence of geodesics in Liouville quantum gravity for \[\gamma \in (0,2)\]. Ann. Probab. 48 1861-1901. · Zbl 1453.60141 · doi:10.1214/19-AOP1409
[13] Gwynne, E. and Miller, J. (2021). Existence and uniqueness of the Liouville quantum gravity metric for \[\gamma \in (0,2)\]. Invent. Math. 223 213-333. · Zbl 1461.83018 · doi:10.1007/s00222-020-00991-6
[14] GWYNNE, E., PFEFFER, J. and SHEFFIELD, S. Geodesics and metric ball boundaries in Liouville quantum gravity. Preprint. Available at arXiv:2010.07889.
[15] Le Gall, J.-F. (1999). Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel. · Zbl 0938.60003 · doi:10.1007/978-3-0348-8683-3
[16] LE GALL, J.-F. (2007). The topological structure of scaling limits of large planar maps. Invent. Math. 169 621-670. · Zbl 1132.60013 · doi:10.1007/s00222-007-0059-9
[17] LE GALL, J.-F. (2010). Geodesics in large planar maps and in the Brownian map. Acta Math. 205 287-360. · Zbl 1214.53036 · doi:10.1007/s11511-010-0056-5
[18] Le Gall, J.-F. (2013). Uniqueness and universality of the Brownian map. Ann. Probab. 41 2880-2960. · Zbl 1282.60014 · doi:10.1214/12-AOP792
[19] LE GALL, J.-F. (2015). Bessel processes, the Brownian snake and super-Brownian motion. In In Memoriam Marc Yor—Séminaire de Probabilités XLVII. Lecture Notes in Math. 2137 89-105. Springer, Cham. · Zbl 1334.60174 · doi:10.1007/978-3-319-18585-9_5
[20] LE GALL, J.-F. (2018). Subordination of trees and the Brownian map. Probab. Theory Related Fields 171 819-864. · Zbl 1405.60128 · doi:10.1007/s00440-017-0794-9
[21] Le Gall, J.-F. (2019). Brownian disks and the Brownian snake. Ann. Inst. Henri Poincaré Probab. Stat. 55 237-313. · Zbl 1466.60021 · doi:10.1214/18-aihp882
[22] LE GALL, J.-F. and RIERA, A. (2021). Spine representations for non-compact models of random geometry. Probab. Theory Related Fields 181 571-645. · Zbl 1480.60023 · doi:10.1007/s00440-021-01069-x
[23] LE GALL, J.-F. and WEILL, M. (2006). Conditioned Brownian trees. Ann. Inst. Henri Poincaré Probab. Stat. 42 455-489. · Zbl 1107.60053 · doi:10.1016/j.anihpb.2005.08.001
[24] MARZOUK, C. (2018). Scaling limits of random bipartite planar maps with a prescribed degree sequence. Random Structures Algorithms 53 448-503. · Zbl 1397.05164 · doi:10.1002/rsa.20773
[25] MIERMONT, G. (2009). Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm. Supér. (4) 42 725-781. · Zbl 1228.05118 · doi:10.24033/asens.2108
[26] Miermont, G. (2013). The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210 319-401. · Zbl 1278.60124 · doi:10.1007/s11511-013-0096-8
[27] MILLER, J. and QIAN, W. Personal communication.
[28] MILLER, J. and QIAN, W. (2020). Geodesics in the Brownian map: Strong confluence and geometric structure. Preprint. Available at arXiv:2008.02242.
[29] Serlet, L. (1997). A large deviation principle for the Brownian snake. Stochastic Process. Appl. 67 101-115 · Zbl 0889.60026 · doi:10.1016/S0304-4149(97)00128-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.