×

On hyponormality of Toeplitz operators. (English) Zbl 1525.47064

Summary: In this work we give sufficient conditions for hyponormality of Toeplitz operators on weighted Bergman spaces when the analytic part of the symbol is a monomial and the conjugate part is a polynomial. We also adapt a function theoretic method, due to P. Ahern and Ž. Čučković [Pac. J. Math. 173, No. 2, 295–305 (1996; Zbl 0962.47015)], to a class of Toeplitz operators on weighted Bergman spaces to get an extension of the necessary condition for hyponormality.

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
47B20 Subnormal operators, hyponormal operators, etc.
30H20 Bergman spaces and Fock spaces

Citations:

Zbl 0962.47015
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] P. Ahern and Ž. Čučković, “A mean value inequality with applications to Bergman space operators”, Pacific J. Math. 173:2 (1996), 295-305. · Zbl 0962.47015
[2] C. C. Cowen, “Hyponormal and subnormal Toeplitz operators”, pp. 155-167 in Surveys of some recent results in operator theory, vol. I, Pitman Res. Notes Math. Ser. 171, Longman Sci. Tech., Harlow, 1988. · Zbl 0677.47017
[3] C. C. Cowen, “Hyponormality of Toeplitz operators”, Proc. Amer. Math. Soc. 103:3 (1988), 809-812. · Zbl 0668.47021 · doi:10.2307/2046858
[4] Ž. Čučković and R. E. Curto, “A new necessary condition for the hyponormality of Toeplitz operators on the Bergman space”, J. Operator Theory 79:2 (2018), 287-300. · Zbl 1424.47066 · doi:10.7900/jot
[5] M. Fleeman and C. Liaw, “Hyponormal Toeplitz operators with non-harmonic symbol acting on the Bergman space”, Oper. Matrices 13:1 (2019), 61-83. · Zbl 1448.47039 · doi:10.7153/oam-2019-13-04
[6] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman spaces, Grad. Texts in Math. 199, Springer, 2000. · Zbl 0955.32003 · doi:10.1007/978-1-4612-0497-8
[7] I. S. Hwang and J. Lee, “Hyponormal Toeplitz operators on the weighted Bergman spaces”, Math. Inequal. Appl. 15:2 (2012), 323-330. · Zbl 1269.47021 · doi:10.7153/mia-15-26
[8] I. S. Hwang, J. Lee, and S. W. Park, “Hyponormal Toeplitz operators with polynomial symbols on weighted Bergman spaces”, J. Inequal. Appl. 335 (2014), 1-8. · Zbl 1447.47032 · doi:10.1186/1029-242X-2014-335
[9] Y. Lu and C. Liu, “Commutativity and hyponormality of Toeplitz operators on the weighted Bergman space”, J. Korean Math. Soc. 46:3 (2009), 621-642. · Zbl 1200.47038 · doi:10.4134/JKMS.2009.46.3.621
[10] Y. Lu and Y. Shi, “Hyponormal Toeplitz operators on the weighted Bergman space”, Integral Equations Operator Theory 65:1 (2009), 115-129. · Zbl 1204.47038 · doi:10.1007/s00020-009-1712-z
[11] A. Phukon, “Hyponormality of Toeplitz operators with polynomial symbols on the weighted Bergman space”, Arab. J. Math. 6:2 (2017), 87-94. · Zbl 06767420 · doi:10.1007/s40065-017-0170-8
[12] H. Sadraoui, Hyponormality of Toeplitz operators and composition operators, Ph.D. thesis, Purdue University, 1992.
[13] H. Sadraoui, “Hyponormality on general Bergman spaces”, Filomat 33:17 (2019), 5737-5741. · Zbl 1498.47056
[14] H. Sadraoui and M. Guediri, “Hyponormal Toeplitz operators on the Bergman space”, Oper. Matrices 11:3 (2017), 669-677. · Zbl 06787247 · doi:10.7153/oam-11-44
[15] K. H. Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics 139, Marcel Dekker, New York, 1990 · Zbl 0706.47019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.