×

Smooth bootstrapping of copula functionals. (English) Zbl 07524980

Summary: The smooth bootstrap for estimating copula functionals in small samples is investigated. It can be used both to gauge the distribution of the estimator in question and to augment the data. Issues arising from kernel density and distribution estimation in the copula domain are addressed, such as how to avoid the bounded domain, which bandwidth matrix to choose, and how the smoothing can be carried out. Furthermore, we investigate how the smooth bootstrap impacts the underlying dependence structure or the functionals in question and under which conditions it does not. We provide specific examples and simulations that highlight advantages and caveats of the approach.

MSC:

62-XX Statistics
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] ABDOUS, B., GENEST, C. and RÉMILLARD, B. (2005). Dependence Properties of Meta-Elliptical Distributions. In Statistical Modeling and Analysis for Complex Data Problems (P. Duchesne and B. Rémillard, eds.) 1-15. Springer.
[2] AZZALINI, A. (1981). A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika 68 326-328.
[3] BINGHAM, N. H. (1972). A Tauberian Theorem for Integral Transforms of Hankel Type. Journal of the London Mathematical Society 2 493-503. · Zbl 0244.44004
[4] BOWMAN, A., HALL, P. and PRVAN, T. (1998). Bandwidth selection for the smoothing of distribution functions. Biometrika 4 799-808. · Zbl 0921.62042
[5] COBLENZ, M., DYCKERHOFF, R. and GROTHE, O. (2018). Nonparametric Estimation of Multivariate Quantiles. Environmetrics 29 1-23.
[6] DEVROYE, L. and GYORFI, L. (1985). Nonparametric Density Estimation: The L\[{_1} View \]. Wiley. · Zbl 0546.62015
[7] DEVROYE, L. and WAGNER, T. J. (1979). The L \[{_1}\] Convergence of Kernel Density Estimates. Ann. Statist. 7 1136-1139. · Zbl 0423.62031
[8] DURANTE, F. and SEMPI, C. (2016). Principles of copula theory. Chapman & Hall/CRC. · Zbl 1380.62008
[9] EFRON, B. (1982). The jackknife, the bootstrap and other resampling plans. SIAM. · Zbl 0496.62036
[10] FANG, K. T., KOTZ, S. and NG, K. W. (1990). Symmetric multivariate and related distributions. Chapman & Hall. · Zbl 0699.62048
[11] FELLER, W. (1971). An introduction to probability theory and its applications. Wiley. · Zbl 0219.60003
[12] GEENENS, G., CHARPENTIER, A. and PAINDAVEINE, D. (2018). Probit transformation for nonparametric kernel estimation of the copula density. Bernoulli 23 1848-1873. · Zbl 1392.62101
[13] GERSTNER, T. and GRIEBEL, M. (1998). Numerical integration using sparse grids. Numerical Algorithms 18 209-232. · Zbl 0921.65022
[14] HALL, P. (1992). The bootstrap and Edgeworth expansion. Springer. · Zbl 0829.62021
[15] HÄRDLE, W. K., MÜLLER, M., SPERLICH, S. and WERWATZ, A. (2012). Nonparametric and Semiparametric Models. Springer. · Zbl 1059.62032
[16] HEUBERGER, C. and KROPF, S. (2018). Higher dimensional quasi-power theorem and Berry-Esseen inequality. Monatshefte für Mathematik 187 293-314. · Zbl 1430.60028
[17] HOFERT, M., KOJADINOVIC, I., MÄCHLER, M. and YAN, J. (2018). Elements of copula modeling with R. Springer. · Zbl 1412.62004
[18] HOFERT, M., KOJADINOVIC, I., MÄCHLER, M. and YAN, J. (2022). copula: Multivariate Dependence with Copulas R package version 1.0.1.
[19] HULT, H. and LINDSKOG, F. (2002). Multivariate extremes, aggregation and dependence in elliptical distributions. Adv. in Appl. Probab. 34 587-608. · Zbl 1023.60021
[20] JOARDER, A. and ALI, M. (1996). On the Characteristic Function of the Multivariate \(t\)-Distribution. Pak. J. Statist. 12 55-62. · Zbl 0898.60033
[21] JOE, H. (2015). Dependence modeling with copulas. CRC Press.
[22] KOTZ, A., KOZUBOWSKI, T. and PODGÓRSKI, K. (2001). The Laplace Distribution and Generalizations. A Revisit with Applications to Communications, Economics, Engineering, and Fincance. Springer Science+Business Media, New York. · Zbl 0977.62003
[23] LINDSKOG, F., MCNEIL, A. and SCHMOCK, U. (2003). Kendall’s Tau for Elliptical Distributions. In Credit Risk: Measurement, Evaluation and Management (G. Bol, G. Nakhaeizadeh, S. Rachev, T. Ridder and K. H. Vollmer, eds.) 149-156. Physica-Verlag HD.
[24] LIU, R. and YANG, L. (2008). Kernel estimation of multivariate cumulative distribution function. Journal of Nonparametric Statistics 4 661-677. · Zbl 1154.62028
[25] MAI, J. F. and SCHERER, M. (2012). Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications. World Scientific Pub Co Inc. · Zbl 1301.65001
[26] MCNEIL, A., FREY, R. and EMBRECHTS, P. (2015). Quantitative Risk Management: Concepts, Techniques and Tools, 2nd ed. Princeton University. · Zbl 1337.91003
[27] NADARAYA, E. A. (1964a). Some new estimates for distribution functions. Theory of Probability & its Applications 9 497-500. · Zbl 0152.17605
[28] NADARAYA, E. A. (1964b). Nekotorye novye ocenki funkcij raspredelenija. Teor. Veroyatnost. i Primenen 9 550-554.
[29] NAGLER, T. (2018). Asymptotic analysis of the jittering kernel density estimator. Mathematical Methods of Statistics 27 32-46. · Zbl 1406.62031
[30] NELSEN, R. (2006). An introduction to copulas, 2nd ed. Springer. · Zbl 1152.62030
[31] NIST NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.18 of 2018-03-27. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.
[32] NOLAN, J. P. (2013). Multivariate elliptically contoured stable distributions: theory and estimation. Computational Statistics 28 2067-2089. · Zbl 1306.65118
[33] OMELKA, M., GIJBELS, I. and VERAVERBEKE, N. (2009). Improved kernel estimation of copulas: Weak convergence and goodness-of-fit testing. Annals of Statistics 37 3023-3058. · Zbl 1360.62160
[34] PACKHAM, N. and SCHMIDT, W. M. (2010). Latin hypercube sampling with dependence and applications in finance. Journal of Computational Finance 13 81-111. · Zbl 1284.62346
[35] RUDIN, W. (1976). Principles of Mathematical Analysis, 3rd ed. McGraw-Hill, Inc. · Zbl 0346.26002
[36] RUDIN, W. (1991). Functional Analysis, 2nd ed. McGraw-Hill, Inc., Singapore. · Zbl 0867.46001
[37] SADIKOVA, S. M. (1966). On two-dimensional analogues of an inequality of Esseen and their application to the central limit theorem. Theory of Probability and its Applications XI 325-335.
[38] SALVADORI, G., DURANTE, F., DE MICHELE, C., BERNARDI, M. and PETRELLA, L. (2016). A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities. Water Resources Research 52 3701-3721.
[39] SAMORODNITSKY, G. and TAQQU, M. S. (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall/CRC, New York. · Zbl 0925.60027
[40] SASVÁRI, Z. (2013). Multivariate Characteristic and Correlation Functions. De Gruyter. · Zbl 1276.62034
[41] SCHMID, F. and SCHMIDT, R. (2007). Nonparametric inference on multivariate versions of Blomqvist’s beta and related measures of tail dependence. Metrika 66 323-354. · Zbl 1433.62151
[42] SCHMIDT, R. (2002). Tail dependence for elliptically contoured distributions. Mathematical Methods of Operations Research 55. · Zbl 1015.62052
[43] SCOTT, D. W. (2015). Multivariate Density Estimation: Theory, Practice, and Visualization, 2nd ed. Wiley. · Zbl 1311.62004
[44] SEGERS, J., SIBUYA, M. and TSUKAHARA, H. (2017). The empirical beta copula. Journal of Multivariate Analysis 155 35-51. · Zbl 1360.62237
[45] SHAO, J. and TU, D. (1995). The jackknife and bootstrap. Springer Science & Business Media. · Zbl 0947.62501
[46] SHORTEN, C. and KHOSHGOFTAAR, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data 6 241-267. · doi:10.1186/s40537-019-0197-0
[47] SILVERMAN, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman & Hall. · Zbl 0617.62042
[48] SKLAR, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 229-231. · Zbl 0100.14202
[49] SMOLYAK, S. (1963). Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Mathematics (Translation of Doklady Akademii Nauk SSSR) 4 240-243. · Zbl 0202.39901
[50] SONG, D.-K., PARK, H.-J. and KIM, H.-M. (2014). A Note on the Characteristic Function of Multivariate \(t\) Distribution. Communications for Statistical Applications and Methods 21 81-91. · Zbl 1320.60052
[51] SUTRADHAR, B. C. (1986). On the Characteristic Function of Multivariate Student \(t\)-Distribution. The Canadian Journal of Statistics 4 329-337. · Zbl 0621.60018
[52] TAHA, A. and HANBURY, A. (2015). An efficient algorithm for calculating the exact Hausdorff distance. IEEE transactions on pattern analysis and machine intelligence 37 2153-2163.
[53] TAYLOR, L. and NITSCHKE, G. (2018). Improving Deep Learning with Generic Data Augmentation. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) 1542-1547. · doi:10.1109/SSCI.2018.8628742
[54] WAND, M. P. and JONES, M. C. (1995). Kernel Smoothing. Chapman & Hall. · Zbl 0854.62043
[55] WONG, S. C., GATT, A., STAMATESCU, V. and MCDONNELL, M. D. (2016). Understanding Data Augmentation for Classification: When to Warp? In 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA) 1-6. · doi:10.1109/DICTA.2016.7797091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.