×

Feasibility-based fixed point networks. (English) Zbl 07525625

MSC:

47-XX Operator theory
54-XX General topology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arridge, S. R., Optical tomography in medical imaging, Inverse Probl., 15, 2 (1999) · Zbl 0926.35155
[2] Arridge, S. R.; Schotland, J. C., Optical tomography: forward and inverse problems, Inverse Probl., 25, 12 (2009) · Zbl 1188.35197
[3] Hansen, P. C.; Nagy, J. G.; O’leary, D. P., Deblurring Images: Matrices, Spectra, and Filtering (2006), Philadelphia: SIAM, Philadelphia · Zbl 1112.68127
[4] Osher, S.; Burger, M.; Goldfarb, D.; Xu, J.; Yin, W., An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul., 4, 2, 460-489 (2005) · Zbl 1090.94003
[5] Bauschke, H. H.; Combettes, P. L.; Luke, D. R., Phase retrieval, error reduction algorithm, and fienup variants: a view from convex optimization, JOSA A, 19, 7, 1334-1345 (2002)
[6] Candes, E. J.; Eldar, Y. C.; Strohmer, T.; Voroninski, V., Phase retrieval via matrix completion, SIAM Rev., 57, 2, 225-251 (2015) · Zbl 1344.49057
[7] Fung, S. W.; Di, Z. W., Multigrid optimization for large-scale ptychographic phase retrieval, SIAM J. Imaging Sci., 13, 1, 214-233 (2020) · Zbl 07196102
[8] Bui-Thanh, T.; Ghattas, O.; Martin, J.; Stadler, G., A computational framework for infinite-dimensional Bayesian inverse problems part I: the linearized case, with application to global seismic inversion, SIAM J. Sci. Comput., 35, 6, 2494-2523 (2013) · Zbl 1287.35087
[9] Fung, S. W.; Ruthotto, L., A multiscale method for model order reduction in PDE parameter estimation, J. Comput. Appl. Math., 350, 19-34 (2019) · Zbl 07006455
[10] Fung, S. W.; Ruthotto, L., An uncertainty-weighted asynchronous ADMM method for parallel PDE parameter estimation, SIAM J. Sci. Comput., 41, 5, 129-148 (2019) · Zbl 1428.65067
[11] Haber, E.; Ascher, U.; Aruliah, D.; Oldenburg, D., Fast simulation of 3D electromagnetic problems using potentials, J. Comput. Phys., 163, 1, 150-171 (2000) · Zbl 1145.78323
[12] Haber, E.; Ascher, U. M.; Oldenburg, D. W., Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach, Geophysics, 69, 5, 1216-1228 (2004)
[13] Kan, K.; Fung, S. W.; Ruthotto, L., Pnkh-b: a projected Newton-Krylov method for large-scale bound-constrained optimization, SIAM J. Sci. Comput., 0, 704-726 (2021) · Zbl 07395797
[14] Cucker, F.; Smale, S., Best choices for regularization parameters in learning theory: on the bias-variance problem, Found. Comput. Math., 2, 4, 413-428 (2002) · Zbl 1057.68085
[15] Fung, S.W.: Large-scale parameter estimation in geophysics and machine learning. PhD thesis, Emory University (2019)
[16] Haber, E.; Ruthotto, L., Stable architectures for deep neural networks, Inverse Probl., 34, 1 (2017) · Zbl 1426.68236
[17] Vito, E. D.; Rosasco, L.; Caponnetto, A.; Giovannini, U. D.; Odone, F., Learning from examples as an inverse problem, J. Mach. Learn. Res., 6, 883-904 (2005) · Zbl 1222.68180
[18] Wu Fung, S.; Tyrväinen, S.; Ruthotto, L.; Haber, E., ADMM-Softmax: an ADMM approach for multinomial logistic regression, Electron. Trans. Numer. Anal., 52, 214-229 (2020) · Zbl 07192774
[19] Beck, A.; Teboulle, M., A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2, 1, 183-202 (2009) · Zbl 1175.94009
[20] Candes, E. J.; Romberg, J., Quantitative robust uncertainty principles and optimally sparse decompositions, Found. Comput. Math., 6, 2, 227-254 (2006) · Zbl 1102.94020
[21] Candès, E. J.; Romberg, J.; Tao, T., Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52, 2, 489-509 (2006) · Zbl 1231.94017
[22] Donoho, D. L., Compressed sensing, IEEE Trans. Inf. Theory, 52, 4, 1289-1306 (2006) · Zbl 1288.94016
[23] Calvetti, D.; Reichel, L., Tikhonov regularization of large linear problems, BIT Numer. Math., 43, 2, 263-283 (2003) · Zbl 1038.65048
[24] Golub, G. H.; Hansen, P. C.; O’Leary, D. P., Tikhonov regularization and total least squares, SIAM J. Matrix Anal. Appl., 21, 1, 185-194 (1999) · Zbl 0945.65042
[25] Chan, R. H.; Kan, K. K.; Nikolova, M.; Plemmons, R. J., A two-stage method for spectral-spatial classification of hyperspectral images, J. Math. Imaging Vis., 62, 790-807 (2020) · Zbl 1483.68282
[26] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Phys. D, Nonlinear Phenom., 60, 1-4, 259-268 (1992) · Zbl 0780.49028
[27] Adler, J.; Öktem, O., Learned primal-dual reconstruction, IEEE Trans. Med. Imaging, 37, 6, 1322-1332 (2018)
[28] Kobler, E.; Klatzer, T.; Hammernik, K.; Pock, T., Variational networks: connecting variational methods and deep learning, German Conference on Pattern Recognition, 281-293 (2017), Berlin: Springer, Berlin
[29] Lunz, S.; Öktem, O.; Schönlieb, C.-B., Adversarial regularizers in inverse problems, Advances in Neural Information Processing Systems, 8507-8516 (2018), Red Hook: Curran Associates, Red Hook
[30] Chan, S. H.; Wang, X.; Elgendy, O. A., Plug-and-play ADMM for image restoration: fixed-point convergence and applications, IEEE Trans. Comput. Imaging, 3, 1, 84-98 (2016)
[31] Cohen, R., Elad, M., Milanfar, P.: Regularization by denoising via fixed-point projection (red-pro) (2020). arXiv preprint 2008.00226 · Zbl 1474.94011
[32] Venkatakrishnan, S. V.; Bouman, C. A.; Wohlberg, B., Plug-and-play priors for model based reconstruction, 2013 IEEE Global Conference on Signal and Information Processing, 945-948 (2013), New York: IEEE Press, New York
[33] Xu, L.; Ren, J. S.; Liu, C.; Jia, J., Deep convolutional neural network for image deconvolution, Adv. Neural Inf. Process. Syst., 27, 1790-1798 (2014)
[34] Jin, K. H.; McCann, M. T.; Froustey, E.; Unser, M., Deep convolutional neural network for inverse problems in imaging, IEEE Trans. Image Process., 26, 9, 4509-4522 (2017) · Zbl 1409.94275
[35] Moeller, M.; Mollenhoff, T.; Cremers, D., Controlling neural networks via energy dissipation, Proceedings of the IEEE International Conference on Computer Vision, 3256-3265 (2019)
[36] Censor, Y.; Chen, W.; Combettes, P. L.; Davidi, R.; Herman, G. T., On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints, Comput. Optim. Appl., 51, 3, 1065-1088 (2012) · Zbl 1244.90155
[37] Censor, Y.; Elfving, T.; Herman, G. T.; Nikazad, T., On diagonally relaxed orthogonal projection methods, SIAM J. Sci. Comput., 30, 1, 473-504 (2008) · Zbl 1159.65317
[38] Gordon, D.; Gordon, R., Component-averaged row projections: a robust, block-parallel scheme for sparse linear systems, SIAM J. Sci. Comput., 27, 3, 1092-1117 (2005) · Zbl 1093.65033
[39] Censor, Y.; Segal, A., Iterative projection methods in biomedical inverse problems. Mathematical methods in biomedical imaging and intensity-modulated radiation therapy, IMRT, 10, 65-96 (2008)
[40] Censor, Y.; Cegielski, A., Projection methods: an annotated bibliography of books and reviews, Optimization, 64, 11, 2343-2358 (2015) · Zbl 1328.65001
[41] Bauschke, H. H.; Koch, V. R., Projection methods: Swiss army knives for solving feasibility and best approximation problems with halfspaces, Contemp. Math., 636, 1-40 (2015) · Zbl 1325.65080
[42] Ordoñez, C. E.; Karonis, N.; Duffin, K.; Coutrakon, G.; Schulte, R.; Johnson, R.; Pankuch, M., A real-time image reconstruction system for particle treatment planning using proton computed tomography (pct), Phys. Proc., 90, 193-199 (2017)
[43] Penfold, S.; Censor, Y.; Schulte, R. W.; Bashkirov, V.; McAllister, S.; Schubert, K. E.; Rosenfeld, A. B.; Censor, Y.; Jiang, M.; Wang, G., Block-iterative and string-averaging projection algorithms in proton computed tomography image reconstruction, Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems, 347-368 (2010), Madison: Medical Physics Publishing, Madison
[44] Bauschke, H. H.; Koch, V. R., Projection methods: Swiss army knives for solving feasibility and best approximation problems with halfspaces, Contemp. Math., 636, 1-40 (2015) · Zbl 1325.65080
[45] Bauschke, H. H.; Combettes, P. L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces (2017), New York: Springer, New York · Zbl 1359.26003
[46] Bauschke, H. H.; Borwein, J. M., On projection algorithms for solving convex feasibility problems, SIAM Rev., 38, 3, 367-426 (1996) · Zbl 0865.47039
[47] Kaczmarz, S.: Angenaherte auflosung von systemen linearer gleichungen. In: Bulletin International de L’Académie Polonaise des Sciences et des Lettres A (1937) · JFM 63.0524.02
[48] Cimmino, G., Cacolo approssimato per le soluzioni dei systemi di equazioni lineari, Ric. Sci. (Roma), 1, 326-333 (1938) · JFM 64.1244.02
[49] Aharoni, R.; Censor, Y., Block-iterative projection methods for parallel computation of solutions to convex feasibility problems, Linear Algebra Appl., 120, 165-175 (1989) · Zbl 0679.65046
[50] Byrne, C. L., Block-iterative methods for image reconstruction from projections, IEEE Trans. Image Process., 5, 5, 792-794 (1996)
[51] Censor, Y.; Zaslavski, A. J., Convergence and perturbation resilience of dynamic string-averaging projection methods, Comput. Optim. Appl., 54, 1, 65-76 (2013) · Zbl 1285.90079
[52] Censor, Y.; Segal, A., On the string averaging method for sparse common fixed-point problems, Int. Trans. Oper. Res., 16, 4, 481-494 (2009) · Zbl 1226.47070
[53] Censor, Y.; Tom, E., Convergence of string-averaging projection schemes for inconsistent convex feasibility problems, Optim. Methods Softw., 18, 5, 543-554 (2003) · Zbl 1065.65074
[54] Davidi, R.; Herman, G. T.; Censor, Y., Perturbation-resilient block-iterative projection methods with application to image reconstruction from projections, Int. Trans. Oper. Res., 16, 4, 505-524 (2009) · Zbl 1191.94013
[55] Censor, Y.; Davidi, R.; Herman, G. T., Perturbation resilience and superiorization of iterative algorithms, Inverse Probl., 26, 6 (2010) · Zbl 1193.65019
[56] Herman, G. T.; Garduño, E.; Davidi, R.; Censor, Y., Superiorization: an optimization heuristic for medical physics, Med. Phys., 39, 9, 5532-5546 (2012)
[57] He, H.; Xu, H.-K., Perturbation resilience and superiorization methodology of averaged mappings, Inverse Probl., 33, 4 (2017) · Zbl 1366.65061
[58] Censor, Y., Weak and strong superiorization: between feasibility-seeking and minimization, An. Ştiinţ. Univ. ‘Ovidius’ Constanţa, Ser. Mat., 23, 3, 41-54 (2017) · Zbl 1349.90675
[59] Schöpfer, F.; Lorenz, D. A., Linear convergence of the randomized sparse Kaczmarz method, Math. Program., 173, 1, 509-536 (2019) · Zbl 1408.65038
[60] Lorenz, D. A.; Wenger, S.; Schöpfer, F.; Magnor, M., A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing, 2014 IEEE International Conference on Image Processing (ICIP), 1347-1351 (2014), New York: IEEE Press, New York
[61] Cegielski, A., Iterative Methods for Fixed Point Problems in Hilbert Spaces (2012), Berlin: Springer, Berlin · Zbl 1256.47043
[62] Krasnosel’skiĭ, M. A., Two remarks about the method of successive approximations, Usp. Mat. Nauk, 10, 123-127 (1955)
[63] Mann, R., Mean value, Methods Iterat., 4, 3, 506-510 (1953) · Zbl 0050.11603
[64] LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 7553, 436-444 (2015)
[65] Bengio, Y., Learning Deep Architectures for AI (2009), Norwell: Now Publishers, Norwell · Zbl 1192.68503
[66] Rumelhart, D. E.; Hinton, G. E.; Williams, R. J., Learning representations by back-propagating errors, Nature, 323, 6088, 533-536 (1986) · Zbl 1369.68284
[67] Manning, C.; Schutze, H., Foundations of Statistical Natural Language Processing (1999), Cambridge: MIT Press, Cambridge · Zbl 0951.68158
[68] Hastie, T.; Tibshirani, R.; Friedman, J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2009), New York: Springer, New York · Zbl 1273.62005
[69] Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. (2016). 1606.04838 · Zbl 1397.65085
[70] Kingma, D. P.; Ba, J., Adam: a method for stochastic optimization, ICLR (Poster) (2015)
[71] Fan, F.; Xiong, J.; Wang, G., Universal approximation with quadratic deep networks, Neural Netw., 124, 383-392 (2020) · Zbl 1434.68506
[72] Tabuada, P., Gharesifard, B.: Universal approximation power of deep neural networks via nonlinear control theory (2020). arXiv preprint 2007.06007
[73] Fung, S.W., Heaton, H., Li, Q., McKenzie, D., Osher, S., Yin, W.: Fixed point networks: implicit depth models with Jacobian-free backprop (2021). arXiv preprint 2103.12803
[74] Browder, F. E., Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci., 54, 4, 1041-1044 (1965) · Zbl 0128.35801
[75] Göhde, D., Zum prinzip der kontraktiven abbildung, Math. Nachr., 30, 3-4, 251-258 (1965) · Zbl 0127.08005
[76] Kirk, W. A., A fixed point theorem for mappings which do not increase distances, Am. Math. Mon., 72, 9, 1004-1006 (1965) · Zbl 0141.32402
[77] Krantz, S. G.; Parks, H. R., The Implicit Function Theorem: History, Theory, and Applications (2012), Berlin: Springer, Berlin · Zbl 1012.58003
[78] Bai, S.; Kolter, J. Z.; Koltun, V., Deep equilibrium models, Advances in Neural Information Processing Systems, 690-701 (2019)
[79] Winston, E.; Kolter, J. Z.; Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.; Lin, H., Monotone operator equilibrium networks, Advances in Neural Information Processing Systems, 10718-10728 (2020), Red Hook: Curran Associates, Red Hook
[80] Chen, R. T.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D. K., Neural ordinary differential equations, Advances in Neural Information Processing Systems, 6571-6583 (2018)
[81] Bai, S., Koltun, V., Kolter, J.Z.: Multiscale deep equilibrium models. In: Advances in Neural Information Processing Systems 33 (2020)
[82] Monga, V.; Li, Y.; Eldar, Y. C., Algorithm unrolling: interpretable, efficient deep learning for signal and image processing, IEEE Signal Process. Mag., 38, 2, 18-44 (2021)
[83] Chen, T., Chen, X., Chen, W., Heaton, H., Liu, J., Wang, Z., Yin, W.: Learning to optimize: a primer and a benchmark (2021). arXiv preprint 2103.12828
[84] Gregor, K.; LeCun, Y., Learning fast approximations of sparse coding, Proceedings of the 27th International Conference on International Conference on Machine Learning, 399-406 (2010)
[85] Rick Chang, J.; Li, C.-L.; Poczos, B.; Vijaya Kumar, B.; Sankaranarayanan, A. C., One network to solve them all—solving linear inverse problems using deep projection models, Proceedings of the IEEE International Conference on Computer Vision, 5888-5897 (2017)
[86] Metzler, C.; Mousavi, A.; Baraniuk, R., Learned D-AMP: principled neural network based compressive image recovery, Advances in Neural Information Processing Systems, 1772-1783 (2017)
[87] Chen, X.; Liu, J.; Wang, Z.; Yin, W., Theoretical linear convergence of unfolded ISTA and its practical weights and thresholds, Advances in Neural Information Processing Systems, 9061-9071 (2018)
[88] Diamond, S., Sitzmann, V., Heide, F., Wetzstein, G.: Unrolled optimization with deep priors (2018). 1705.08041 [cs]
[89] Perdios, D.; Besson, A.; Rossinelli, P.; Thiran, J.-P., Learning the weight matrix for sparsity averaging in compressive imaging, 2017 IEEE International Conference on Image Processing (ICIP), 3056-3060 (2017), New York: IEEE Press, New York
[90] Mardani, M.; Sun, Q.; Donoho, D.; Papyan, V.; Monajemi, H.; Vasanawala, S.; Pauly, J., Neural proximal gradient descent for compressive imaging, Adv. Neural Inf. Process. Syst., 31, 9573-9583 (2018)
[91] Zhang, J.; Ghanem, B., Ista-net: interpretable optimization-inspired deep network for image compressive sensing, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1828-1837 (2018)
[92] Ito, D.; Takabe, S.; Wadayama, T., Trainable ISTA for sparse signal recovery, IEEE Trans. Signal Process., 67, 12, 3113-3125 (2019) · Zbl 07123277
[93] Mardani, M., Sun, Q., Papyan, V., Vasanawala, S., Pauly, J., Donoho, D.: Degrees of freedom analysis of unrolled neural networks (2019). arXiv preprint 1906.03742
[94] Putzky, P., Welling, M.: Recurrent inference machines for solving inverse problems (2017). 1706.04008 [cs]
[95] Zhang, K.; Zuo, W.; Gu, S.; Zhang, L., Learning deep CNN denoiser prior for image restoration, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3929-3938 (2017)
[96] Chen, Y.; Pock, T., Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration, IEEE Trans. Pattern Anal. Mach. Intell., 39, 6, 1256-1272 (2017)
[97] Sreter, H.; Giryes, R., Learned convolutional sparse coding, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2191-2195 (2018), New York: IEEE Press, New York
[98] Liu, J.; Chen, X.; Wang, Z.; Yin, W., ALISTA: analytic weights are as good as learned weights in LISTA, International Conference on Learning Representations (2019)
[99] Xie, X.; Wu, J.; Liu, G.; Zhong, Z.; Lin, Z., Differentiable linearized ADMM, International Conference on Machine Learning, 6902-6911 (2019)
[100] Meinhardt, T.; Moller, M.; Hazirbas, C.; Cremers, D., Learning proximal operators: using denoising networks for regularizing inverse imaging problems, Proceedings of the IEEE International Conference on Computer Vision, 1781-1790 (2017)
[101] Liu, R.; Cheng, S.; Ma, L.; Fan, X.; Luo, Z., A bridging framework for model optimization and deep propagation, Adv. Neural Inf. Process. Syst., 31, 4318-4327 (2018)
[102] Corbineau, M.-C.; Bertocchi, C.; Chouzenoux, E.; Prato, M.; Pesquet, J.-C., Learned image deblurring by unfolding a proximal interior point algorithm, 2019 IEEE International Conference on Image Processing (ICIP), 4664-4668 (2019), New York: IEEE Press, New York
[103] Mukherjee, S., Dittmer, S., Shumaylov, Z., Lunz, S., Öktem, O., Schönlieb, C.-B.: Learned convex regularizers for inverse problems (2020). arXiv preprint 2008.02839
[104] Zhang, K.; Zuo, W.; Zhang, L., Deep plug-and-play super-resolution for arbitrary blur kernels, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1671-1681 (2019)
[105] Li, Y.; Tofighi, M.; Geng, J.; Monga, V.; Eldar, Y. C., Efficient and interpretable deep blind image deblurring via algorithm unrolling, IEEE Trans. Comput. Imaging, 6, 666-681 (2020)
[106] Dudgeon, D.E., Mersereau, R.M.: Multidimensional digital signal processing. Prentice Hall Professional Technical Reference (1990) · Zbl 0643.94001
[107] O’Connor, D.; Vandenberghe, L., Primal-dual decomposition by operator splitting and applications to image deblurring, SIAM J. Imaging Sci., 7, 3, 1724-1754 (2014) · Zbl 1309.65069
[108] Goldstein, T.; Osher, S., The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2, 2, 323-343 (2009) · Zbl 1177.65088
[109] Penfold, S. N.; Schulte, R. W.; Censor, Y.; Rosenfeld, A. B., Total variation superiorization schemes in proton computed tomography image reconstruction, Med. Phys., 37, 11, 5887-5895 (2010)
[110] Humphries, T.; Winn, J.; Faridani, A., Superiorized algorithm for reconstruction of CT images from sparse-view and limited-angle polyenergetic data, Phys. Med. Biol., 62, 16 (2017)
[111] Leuschner, J., Schmidt, M., Baguer, D.O., Maaß, P.: The LoDoPaB-CT dataset: a benchmark dataset for low-dose CT reconstruction methods (2019). arXiv preprint 1910.01113
[112] Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L., Pytorch: an imperative style, high-performance deep learning library, Advances in Neural Information Processing Systems, 8026-8037 (2019)
[113] Adler, J., Kohr, H., Öktem, O.: (2017). Operator Discretization Library (ODL)
[114] Heaton, H.; Censor, Y., Asynchronous sequential inertial iterations for common fixed points problems with an application to linear systems, J. Glob. Optim., 74, 1, 95-119 (2019) · Zbl 1461.90098
[115] Adler, J.; Öktem, O., Solving ill-posed inverse problems using iterative deep neural networks, Inverse Probl., 33, 12 (2017) · Zbl 1394.92070
[116] Lie, J.; Nordbotten, J. M., Inverse scale spaces for nonlinear regularization, J. Math. Imaging Vis., 27, 1, 41-50 (2007) · Zbl 1478.94059
[117] Censor, Y.: Superiorization and perturbation resilience of algorithms: a continuously updated bibliography (2021). arXiv preprint 1506.04219
[118] Ryu, E.; Yin, W., Large-Scale Convex Optimization: Algorithm Designs via Monotone Operators (2022), Cambridge: Cambridge University Press, Cambridge
[119] He, K.; Zhang, X.; Ren, S.; Sun, J., Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778 (2016)
[120] Heaton, H., Fung, S.W., Lin, A.T., Osher, S., Yin, W.: Wasserstein-based projection with applications to inverse problems (2020). arXiv preprint 2008.02200
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.