A reverse augmented constraint preconditioner for Lagrange multiplier methods in contact mechanics. (English) Zbl 07525985

Summary: Frictional contact is one of the most challenging problems in computational mechanics. Typically, it is a tough non-linear problem often requiring several Newton iterations to converge and causing troubles also in the solution to the related linear systems. When contact is modeled with the aid of Lagrange multipliers, the impenetrability condition is enforced exactly, but the associated Jacobian matrix is indefinite and needs a special treatment for a fast numerical solution. In this work, a constraint preconditioner is proposed where the primal Schur complement is computed after augmenting the zero block. The name Reverse is used in contrast to the traditional approach where only the structural block undergoes an augmentation. Besides being able to address problems characterized by singular structural blocks, often arising in contact mechanics, it is shown that the proposed approach is significantly cheaper than traditional constraint preconditioning for this class of problems and it is suitable for an efficient HPC implementation through the Chronos parallel package. Our conclusions are supported by several numerical experiments on mid- and large-size problems from various applications. The source files implementing the proposed algorithm are freely available on GitHub.


65F08 Preconditioners for iterative methods
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
Full Text: DOI


[1] Kikuchi, N.; Oden, J. T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods (1988), SIAM: SIAM Philadelphia, PA, USA · Zbl 0685.73002
[2] Laursen, T. A., Computational Contact And Impact Mechanics: Fundamentals Of Modeling Interfacial Phenomena In Nonlinear Finite Element Analysis (2003), Springer-Verlag Berlin Heidelberg
[3] Wriggers, P., Computational Contact Mechanics (2006), Springer-Verlag Berlin Heidelberg · Zbl 1104.74002
[4] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer-Verlag New York · Zbl 0934.74003
[5] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method: Solid Mechanics (2000), Butterworth-Heinemann · Zbl 0991.74003
[6] Bathe, K. J., Finite Element Procedures (2006), Klaus-Jurgen Bathe
[7] Khoei, A. R.; Lewis, R. W., Adaptive finite element remeshing in a large deformation analysis of metal powder forming, Internat. J. Numer. Methods Engrg., 45, 7, 801-820 (1999) · Zbl 0941.74065
[8] Onate, E.; Rojek, J., Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems, Comput. Methods Appl. Mech. Engrg., 193, 27, 3087-3128 (2004) · Zbl 1079.74646
[9] Ferronato, M.; Gambolati, G.; Janna, C.; Teatini, P., Numerical modelling of regional faults in land subsidence prediction above gas/oil reservoirs, Int. J. Numer. Anal. Methods Geomech., 32, 6, 633-657 (2008) · Zbl 1273.74532
[10] Benkhira, E. H.; Essoufi, E. H.; Fakhar, R., On convergence of the penalty method for a static unilateral contact problem with nonlocal friction in electro-elasticity, European J. Appl. Math., 27, 1, 1-22 (2016) · Zbl 1387.74083
[11] Burman, E.; Ern, A., A nonlinear consistent penalty method for positivity preservation in the finite element approximation of the transport equation, Comput. Methods Appl. Mech. Engrg., 320, 122-132 (2017) · Zbl 1439.76053
[12] Bertsekas, D. P., Constrained Optimization And Lagrange Multiplier Methods (1984), Academic Press New York
[13] Hager, C.; Hüeber, S.; Wohlmuth, B. I., A stable energy-conserving approach for frictional contact problems based on quadrature formulas, Internat. J. Numer. Methods Engrg., 73, 2, 205-225 (2008) · Zbl 1166.74050
[14] Franceschini, A.; Ferronato, M.; Janna, C.; Teatini, P., A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics, J. Comput. Phys., 314, 503-521 (2016) · Zbl 1349.74321
[15] Benzi, M.; Golub, G. H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034
[16] Li, D.; Sun, X. L., Existence of a saddle point in nonconvex constrained optimization, J. Global Optim., 21, 1, 39-50 (2001) · Zbl 1099.90590
[17] Bergamaschi, L.; Gondzio, J.; Venturin, M.; Zilli, G., Inexact constraint preconditioners for linear systems arising in interior point methods, Comput. Optim. Appl., 36, 2-3, 137-147 (2007) · Zbl 1148.90349
[18] Schöberl, J.; Zulehner, W., Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl., 29, 3, 752-773 (2007) · Zbl 1154.65029
[19] Pearson, J. W.; Porcelli, M.; Stoll, M., Interior-point methods and preconditioning for PDE-constrained optimization problems involving sparsity terms, Numer. Lin. Alg. Appl., 27, 2 (2020) · Zbl 07177902
[20] Vassilevski, P. S.; Lazarov, R. D., Preconditioning mixed finite element saddle-point elliptic problems, Numer. Linear Algebra Appl., 3, 1, 1-20 (1996) · Zbl 0848.65079
[21] Barrientos, M. A.; Gatica, G. N.; Stephan, E. P., A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate, Numer. Math., 91, 2, 197-222 (2002) · Zbl 1067.74062
[22] Loghin, D.; Wathen, A. J., Analysis of preconditioners for saddle-point problems, SIAM J. Sci. Comput., 25, 6, 2029-2049 (2004) · Zbl 1067.65048
[23] Olshanskii, M. A.; Peters, J.; Reusken, A., Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations, Numer. Math., 105, 1, 159-191 (2006) · Zbl 1120.65059
[24] Bergamaschi, L.; Ferronato, M.; Gambolati, G., Mixed constraint preconditioners for the iterative solution of fe coupled consolidation equations, J. Comput. Phys., 227, 23, 9885-9897 (2008) · Zbl 1154.65015
[25] Axelsson, O.; Blaheta, R.; Byczanski, P., Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices, Comput. Vis. Sci., 15, 4, 191-207 (2012) · Zbl 1388.74035
[26] Cao, Y.; Dong, J.-L.; Wang, Y.-M., A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady Navier-Stokes equation, J. Comput. Appl. Math., 273, 41-60 (2015) · Zbl 1310.65034
[27] Pearson, J. W.; Pestana, J.; Silvester, D. J., Refined saddle-point preconditioners for discretized Stokes problems, Numer. Math., 138, 2, 331-363 (2018) · Zbl 1408.76371
[28] Hong, Q.; Kraus, J.; Lymbery, M.; Philo, F., Parameter-robust Uzawa-type iterative methods for double saddle point problems arising in Biot’s consolidation and multiple-network poroelasticity models, Math. Models Methods Appl. Sci., 30, 13, 2523-2555 (2020) · Zbl 1471.65143
[29] Murphy, M. F.; Golub, G. H.; Wathen, A. J., Note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput., 21, 6, 1969-1972 (2000) · Zbl 0959.65063
[30] Keller, C.; Gould, N. I.M.; Wathen, A. J., Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl., 21, 4, 1300-1317 (2000) · Zbl 0960.65052
[31] Bergamaschi, L.; Gondzio, J.; Zilli, G., Preconditioning indefinite systems in interior point methods for optimization, Comput. Optim. Appl., 28, 2, 149-171 (2004) · Zbl 1056.90137
[32] Bergamaschi, L.; Ferronato, M.; Gambolati, G., Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations, Comput. Methods Appl. Mech. Engrg., 196, 25-28, 2647-2656 (2007) · Zbl 1173.76330
[33] Janna, C.; Ferronato, M.; Gambolati, G., Parallel inexact constraint preconditioning for ill-conditioned consolidation problems, Comput. Geosci., 16, 3, 661-675 (2012)
[34] Ferronato, M.; Franceschini, A.; Janna, C.; Castelletto, N.; Tchelepi, H. A., A general preconditioning framework for coupled multiphysics problems with application to contact-and poro-mechanics, J. Comput. Phys., 398, Article 108887 pp. (2019) · Zbl 1453.65065
[35] Nardean, S.; Ferronato, M.; Abushaikha, A. S., A novel block non-symmetric preconditioner for mixed-hybrid finite-element-based Darcy flow simulations, J. Comput. Phys., 442 (2021)
[36] Silvester, D.; Elman, H.; Kay, D.; Wathen, A., Efficient proconditioning of the linearized Navier-Stokes equations for incompressible flow, J. Comput. Appl. Math., 128, 1-2, 261-279 (2001) · Zbl 0983.76051
[37] Elman, H. C., Preconditioners for saddle point problems arising in computational fluid dynamics, Appl. Numer. Math., 43, 1-2, 75-89 (2002) · Zbl 1168.76348
[38] Cao, Z.-H., Fast uzawa algorithm for generalized saddle point problems, Appl. Numer. Math., 46, 2, 157-171 (2003) · Zbl 1032.65029
[39] Elman, H.; Howle, V. E.; Shadid, J.; Shuttleworth, R.; Tuminaro, R., Block preconditioners based on approximate commutators, SIAM J. Sci. Comput., 27, 5, 1651-1668 (2006) · Zbl 1100.65042
[40] Choi, Y.; Farhat, C.; Murray, W.; Saunders, M., A practical factorization of a Schur complement for PDE-constrained distributed optimal control, J. Sci. Comput., 65, 2, 576-597 (2015) · Zbl 1327.65225
[41] Castelletto, N.; White, J. A.; Ferronato, M., Scalable algorithms for three-field mixed finite element coupled poromechanics, J. Comput. Phys., 327, 894-918 (2016) · Zbl 1373.76312
[42] Y. Maday, C. Mavriplis, A. Patera, Nonconforming Mortar Element Methods: Application to Spectral Discretizations, Tech. Rep., 1988. · Zbl 0692.65055
[43] Belgacem, F. B., The mortar finite element method with Lagrange multipliers, Numer. Math., 84, 2, 173-197 (1999) · Zbl 0944.65114
[44] Bernardi, C.; Maday, Y.; Patera, A. T., Domain decomposition by the mortar element method, (Asymptotic And Numerical Methods For Partial Differential Equations With Critical Parameters (1993), Springer), 269-286 · Zbl 0799.65124
[45] Seshaiyer, P.; Suri, M., Hp submeshing via non-conforming finite element methods, Comput. Methods Appl. Mech. Engrg., 189, 3, 1011-1030 (2000) · Zbl 0971.65101
[46] Wohlmuth, B., Variationally consistent discretization schemes and numerical algorithms for contact problems, Acta Numer., 20, 569-734 (2011) · Zbl 1432.74176
[47] Adams, M. F., Algebraic multigrid methods for constrained linear systems with applications to contact problems in solid mechanics, Numer. Linear Algebra Appl., 11, 2-3, 141-153 (2004) · Zbl 1164.65515
[48] Wiesner, T. A.; Popp, A.; Gee, M. W.; Wall, W. A., Algebraic multigrid methods for dual mortar finite element formulations in contact mechanics, Internat. J. Numer. Methods Engrg., 114, 4, 399-430 (2018)
[49] Wiesner, T. A.; Mayr, M.; Popp, A.; Gee, M. W.; Wall, W. A., Algebraic multigrid methods for saddle point systems arising from mortar contact formulations, Internat. J. Numer. Methods Engrg., 122, 15, 3749-3779 (2021)
[50] Greif, C.; Wathen, M., Conjugate gradient for nonsingular saddle-point systems with a maximally rank-deficient leading block, J. Comput. Appl. Math., 358, 1-11 (2019) · Zbl 1419.65107
[51] Fortin, M.; Glowinski, R., Augmented Lagrangian Methods: Applications to The Numerical Solution Of Boundary-Value Problems (1983), Elsevier · Zbl 0525.65045
[52] Alart, P.; Curnier, A., A mixed formulation for frictional contact problems prone to Newton like solution methods, Comput. Methods Appl. Mech. Engrg., 92, 3, 353-375 (1991) · Zbl 0825.76353
[53] Pietrzak, G.; Curnier, A., Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment, Comput. Methods Appl. Mech. Engrg., 177, 3-4, 351-381 (1999) · Zbl 0991.74047
[54] Bacuta, C., A unified approach for Uzawa algorithms, SIAM J. Numer. Anal., 44, 6, 2633-2649 (2006) · Zbl 1128.76052
[55] Benzi, M.; Olshanskii, M. A., An augmented Lagrangian-based approach to the Oseen problem, SIAM J. Sci. Comput., 28, 6, 2095-2113 (2006) · Zbl 1126.76028
[56] Lee, Y.-J.; Wu, J.; Xu, J.; Zikatanov, L., Robust subspace correction methods for nearly singular systems, Math. Models Methods Appl. Sci., 17, 11, 1937-1963 (2007) · Zbl 1151.65096
[57] Brezzi, F.; Fortin, M., Mixed And Hybrid Finite Element Methods (2012), Springer Science & Business Media · Zbl 1009.65067
[58] Frigo, M.; Isotton, G.; Janna, C., Chronos web page (2020), URL https://www.m3eweb.it/chronos
[59] Franceschini, A.; Castelletto, N.; Ferronato, M., Block preconditioning for fault/fracture mechanics saddle-point problems, Comput. Methods Appl. Mech. Engrg., 344, 376-401 (2019) · Zbl 1440.74473
[60] Bergamaschi, L., On eigenvalue distribution of constraint-preconditioned symmetric saddle point matrices, Numer. Linear Algebra Appl., 19, 4, 754-772 (2012) · Zbl 1274.65084
[61] Axelsson, O.; Neytcheva, M., Eigenvalue estimates for preconditioned saddle point matrices, Numer. Linear Algebra Appl., 13, 4, 339-360 (2006) · Zbl 1224.65080
[62] Ruiz, D.; Sartenaer, A.; Tannier, C., Refining the lower bound on the positive eigenvalues of saddle point matrices with insights on the interactions between the blocks, SIAM J. Matrix Anal. Appl., 39, 2, 712-736 (2018) · Zbl 1388.15016
[63] Aagaard, B.; Knepley, M.; Williams, C., A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation, J. Geophys. Res.: Solid Earth, 118, 6, 3059-3079 (2013)
[64] Jha, B.; Juanes, R., Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering, Water Resour. Res., 50, 5, 3776-3808 (2014)
[65] White, J.; Castelletto, N.; Tchelepi, H., Block-partitioned solvers for coupled poromechanics: A unified framework, Comput. Methods Appl. Mech. Engrg., 303, 55-74 (2016) · Zbl 1425.74497
[66] Powell, M. J.D., A Method for Nonlinear Constraints in Minimization Problems (1969), Academic Press London · Zbl 0194.47701
[67] Golub, G.; Greif, C., On solving block-structured indefinite linear systems, SIAM J. Sci. Comput., 24, 6, 2076-2092 (2003) · Zbl 1036.65033
[68] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[69] Isotton, G.; Frigo, M.; Spiezia, N.; Janna, C., Chronos: A general purpose classical AMG solver for High Performance Computing, SIAM J. Sci. Comput., 43, 5, C335-C357 (2021) · Zbl 1487.65032
[70] Karypis, G.; Schloegel, K., Parallel graph partitioning and sparse matrix ordering library, Version 4.0 (2013), URL http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/manual.pdf
[71] Franceschini, A.; Teatini, P.; Janna, C.; Ferronato, M.; Gambolati, G.; Ye, S.; Carreón-Freyre, D., Modelling ground rupture due to groundwater withdrawal: applications to test cases in China and Mexico, Proc. Int. Assoc. Hydrol., 372, 63-68 (2015)
[72] Paludetto Magri, V. A.; Franceschini, A.; Janna, C., A novel algebraic multigrid approach based on adaptive smoothing and prolongation for ill-conditioned systems, SIAM J. Sci. Comput., 41, 1, A190-A219 (2019) · Zbl 1433.65069
[73] Janna, C.; Ferronato, M.; Sartoretto, F.; Gambolati, G., FSAIPACK: A software package for high-performance factored sparse approximate inverse preconditioning, ACM Trans. Math. Software (TOMS), 41, 2, 1-26 (2015) · Zbl 1369.65052
[74] Franceschini, A.; Magri, V. A.P.; Mazzucco, G.; Spiezia, N.; Janna, C., A robust adaptive algebraic multigrid linear solver for structural mechanics, Comput. Methods Appl. Mech. Engrg., 352, 389-416 (2019) · Zbl 1441.74302
[75] Castelletto, N.; Gambolati, G.; Teatini, P., Geological CO \({}_2\) sequestration in multi-compartment reservoirs: Geomechanical challenges, J. Geophys. Res. Solid Earth, 118, 5, 2417-2428 (2013)
[76] Castelletto, N.; Teatini, P.; Gambolati, G.; Bossie-Codreanu, D.; Vincké, O.; Daniel, J.-M.; Battistelli, A.; Marcolini, M.; Donda, F.; Volpi, V., Multiphysics modeling of CO \({}_2\) sequestration in a faulted saline formation in Italy, Adv. Water Resour., 62, 570-587 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.