An enhanced hybrid arithmetic optimization algorithm for engineering applications. (English) Zbl 07526217

Summary: Arithmetic optimization algorithm (AOA) is a newly well-developed meta-heuristic algorithm that is inspired by the distribution behavior of main arithmetic operators in mathematics. Although the original AOA has shown well competitive performance with popular meta-heuristic algorithms, it still faces the issues of insufficient exploitation ability, ease of falling into local optima and low convergence accuracy in large-scale applications. In order to ameliorate these deficiencies, an enhanced hybrid AOA named CSOAOA, integrated with point set strategy, optimal neighborhood learning strategy and crisscross strategy, is developed in this paper. First, a good point set initialization strategy is added to obtain a higher-quality initial population, which improves the convergence speed of the algorithm. Then, the optimal neighborhood learning strategy is adopted to guide the individual’s search behavior and avoid the algorithm falling into the current local optimum, which boosts the search efficiency and calculation accuracy. Finally, by combining AOA with the crisscross optimization algorithm, the exploration and utilization ability of the crisscross algorithm are integrated into the CSOAOA. These strategies collaborate to enhance AOA in accelerating overall performance. The superiority of the proposed CSOAOA is comprehensively verified by comparing with the original AOA, six improved AOA and numerous celebrated and newly developed algorithms on the well-known 23 classical benchmark functions, IEEE Congress on Evolutionary Computation (CEC) 2019 test suite and IEEE CEC 2020 benchmark functions, respectively. Meanwhile, the practicability of CSOAOA is also highlighted by solving eight real-world engineering design problems. Furthermore, the statistical testing of CSOAOA has been conducted to validate its significance. Experimental results and statistical comparisons manifest the superior performance of CSOAOA over the comparison algorithms in terms of precision, convergence rate and solution quality. Therefore, CSOAOA is potentially a powerful and competitive meta-heuristic algorithm for solving complex engineering optimization problems.


90-XX Operations research, mathematical programming
68-XX Computer science
Full Text: DOI


[1] Wu, G., Across neighborhood search for numerical optimization, Inform. Sci., 329, 597-618 (2016) · Zbl 1441.68242
[2] Zhang, J.; Xiao, M.; Gao, L.; Pan, Q., Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems, Appl. Math. Model., 63, 464-490 (2018) · Zbl 1480.90257
[3] Zhao, D.; Liu, L.; Yu, F. H.; Heidari, A. A.; Wang, M. J.; Oliva, D.; Muhammad, K.; Chen, H. L., Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation, Expert Syst. Appl., 167 (2021)
[4] Du, C.; Zhao, W.; Jiang, S.; Deng, X., Dynamic XFEM-based detection of multiple flaws using an improved artificial bee colony algorithm, Comput. Methods Appl. Mech. Engrg., 365, Article 112995 pp. (2020) · Zbl 1442.74224
[5] Merrikh-Bayat, F., The runner-root algorithm: A metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature, Appl. Soft Comput., 33, 292-303 (2015)
[6] Zhong, K.; Zhou, G.; Deng, W.; Zhou, Y.; Luo, Q., MOMPA: MUlti-objective marine predator algorithm, Comput. Methods Appl. Mech. Engrg., 385, Article 114029 pp. (2021) · Zbl 07415675
[7] Meng, A. B.; Chen, Y. C.; Yin, H.; Chen, S. Z., Crisscross optimization algorithm and its application, Knowl.-Based Syst., 67, 218-229 (2014)
[8] Abualigah, L.; Diabat, A., A comprehensive survey of the Grasshopper optimization algorithm: results, variants, and applications, Neural Comput. Appl., 32, 19, 15533-15556 (2020)
[9] Abualigah, L.; Diabat, A.; Geem, Z. W., A comprehensive survey of the harmony search algorithm in clustering applications, Appl. Sci., 10, 11 (2020)
[10] Kallioras, N. A.; Lagaros, N. D.; Avtzis, D. N., Pity beetle algorithm - A new metaheuristic inspired by the behavior of bark beetles, Adv. Eng. Softw., 121, 147-166 (2018)
[11] Cao, H.; Zheng, H.; Hu, G., The optimal multi-degree reduction of Ball Bézier curves using an improved squirrel search algorithm, Eng. Comput. (2021)
[12] Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A. A.; Al-qaness, M. A.A.; Gandomi, A. H., Aquila optimizer: A novel meta-heuristic optimization algorithm, Comput. Ind. Eng., 157, Article 107250 pp. (2021)
[13] Li, M. D.; Zhao, H.; Weng, X. W.; Han, T., A novel nature-inspired algorithm for optimization: Virus colony search, Adv. Eng. Softw., 92, 65-88 (2016)
[14] Rajeev, S.; Krishnamoorthy, C. S., Discrete optimization of structures using genetic algorithms, J. Struct. Eng., 118, 5, 1233-1250 (1992)
[15] Fogel, D., Artificial intelligence through simulated evolution, Evol. Comput., 227-296 (2009)
[16] Storn, R.; Price, K., Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 4, 341-359 (1997) · Zbl 0888.90135
[17] Hansen, N.; Müller, S. D.; Koumoutsakos, P., Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), Evol. Comput., 11, 1, 1-18 (2003)
[18] Zhao, W.; Wang, L.; Mirjalili, S., Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications, Comput. Methods Appl. Mech. Engrg., 388, Article 114194 pp. (2022) · Zbl 07442769
[19] Gandomi, A. H.; Alavi, A. H., Krill herd: A new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul., 17, 12, 4831-4845 (2012) · Zbl 1266.65092
[20] Li, S.; Chen, H.; Wang, M.; Heidari, A. A.; Mirjalili, S., Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111, 300-323 (2020)
[21] Mirjalili, S.; Gandomi, A. H.; Mirjalili, S. Z.; Saremi, S.; Faris, H.; Mirjalili, S. M., Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw., 114, 163-191 (2017)
[22] Heidari, A. A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H., Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97, 849-872 (2019)
[23] Mirjalili, S.; Mirjalili, S. M.; Lewis, A., Grey Wolf optimizer, Adv. Eng. Softw., 69, 46-61 (2014)
[24] Yang, X. S., Firefly algorithm, stochastic test functions and design optimisation, INT. J. BIO-INSPIR. COM., 2, 2, 78-84 (2010)
[25] Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S., GSA: A gravitational search algorithm, Inform. Sci., 179, 13, 2232-2248 (2009) · Zbl 1177.90378
[26] Nguyen, L. T.; Nestorović, T., Unscented hybrid simulated annealing for fast inversion of tunnel seismic waves, Comput. Methods Appl. Mech. Engrg., 301, 281-299 (2016) · Zbl 1425.74314
[27] Mirjalili, S.; Mirjalili, S. M.; Hatamlou, A., Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl., 27, 2, 495-513 (2015)
[28] Kaveh, A.; Talatahari, S., A novel heuristic optimization method: charged system search, Acta. Mech., 213, 3, 267-289 (2010) · Zbl 1397.65094
[29] Hatamlou, A., Black hole: A new heuristic optimization approach for data clustering, Inform. Sci., 222, 175-184 (2013)
[30] Atashpaz-Gargari, E.; Lucas, C., Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition, (2007 IEEE Cong. Evolution. Comp (2007), IEEE), 4661-4667
[31] Rao, R. V.; Savsani, V. J.; Vakharia, D. P., Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems, Comput. Aided Des., 43, 3, 303-315 (2011)
[32] Ramezani, F.; Lotfi, S., Social-based algorithm (SBA), Appl. Soft Comput., 13, 5, 2837-2856 (2013)
[33] Kar, A. K., Bio inspired computing-A review of algorithms and scope of applications, Expert Syst. Appl., 59, 20-32 (2016)
[34] Hatamlou, A., A hybrid bio-inspired algorithm and its application, Appl. Intell., 47, 4, 1059-1067 (2017)
[35] Kennedy, J.; Eberhart, R., Particle swarm optimization, (Proceedings of ICNN’95-International Conference on Neural Networks, 4 (1995), IEEE), 1942-1948
[36] Dorigo, M.; Birattari, M.; Stützle, T., Ant colony optimization - Artificial ants as a computational intelligence technique, IEEE Comput. Intell. Mag, 1, 4, 28-39 (2006)
[37] Karaboga, D.; Akay, B., A comparative study of artificial bee colony algorithm, Appl. Math. Comput., 214, 1, 108-132 (2009) · Zbl 1169.65053
[38] Yang, X. S.; Hossein Gandomi, A., Bat algorithm: a novel approach for global engineering optimization, Eng. Comput., 29, 5, 464-483 (2012)
[39] Wang, J.; Zhou, B.; Zhou, S., An improved Cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation, Comput. Intell. Neurosci., 2016, Article 2959370 pp. (2016)
[40] Mirjalili, S.; Lewis, A., The whale optimization algorithm, Adv. Eng. Softw., 95, 51-67 (2016)
[41] Mirjalili, S., The ant lion optimizer, Adv. Eng. Softw., 83, 80-98 (2015)
[42] Liu, J.; Li, D.; Wu, Y.; Liu, D., Lion swarm optimization algorithm for comparative study with application to optimal dispatch of cascade hydropower stations, Appl. Soft Comput., 87, Article 105974 pp. (2020)
[43] Dhiman, G.; Kumar, V., Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems, Knowl.-Based Syst., 165, 169-196 (2019)
[44] Pan, W.-T., A new fruit fly optimization algorithm: Taking the financial distress model as an example, Knowl.-Based Syst., 26, 69-74 (2012)
[45] Saremi, S.; Mirjalili, S.; Lewis, A., Grasshopper optimisation algorithm: Theory and application, Adv. Eng. Softw., 105, 30-47 (2017)
[46] Cheraghalipour, A.; Hajiaghaei-Keshteli, M.; Paydar, M. M., Tree growth algorithm (TGA): A novel approach for solving optimization problems, Eng. Appl. Artif. Intell., 72, 393-414 (2018)
[47] Dhiman, G.; Kumar, V., Emperor penguin optimizer: A bio-inspired algorithm for engineering problems, Knowl.-Based Syst., 159, 20-50 (2018)
[48] Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A. H., The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Engrg., 376, Article 113609 pp. (2021) · Zbl 07340412
[49] Xu, Y. P.; Tan, J. W.; Zhu, D.-J.; Ouyang, P.; Taheri, B., Model identification of the proton exchange membrane fuel cells by extreme learning machine and a developed version of arithmetic optimization algorithm, Energy Rep., 7, 2332-2342 (2021)
[50] Guo, H.; Sun, Z.; Sun, H.; Ebrahimian, H., Optimal model of the combined cooling, heating, and power system by improved arithmetic optimization algorithm, ENERG. SOURCE. PART A, 1-23 (2021)
[51] Khatir, S.; Tiachacht, S.; Thanh, C. L.; Ghandourah, E.; Mirjalili, S.; Wahab, M. A., An improved artificial neural network using arithmetic optimization algorithm for damage assessment in FGM composite plates, Compos., 273 (2021)
[52] Naseri, H.; Shokoohi, M.; Jahanbakhsh, H.; Golroo, A.; Gandomi, A. H., Evolutionary and swarm intelligence algorithms on pavement maintenance and rehabilitation planning, INT. J. PAVEMENT ENG., 1-15 (2021)
[53] Kumar, A.; Wu, G.; Ali, M. Z.; Mallipeddi, R.; Suganthan, P. N.; Das, S., A test-suite of non-convex constrained optimization problems from the real-world and some baseline results, Swarm Evol., 56, Article 100693 pp. (2020)
[54] Hu, G.; Li, M.; Wang, X. F.; Wei, G.; Chang, C. T., An enhanced manta ray foraging optimization algorithm for shape optimization of complex CCG-Ball curves, Knowl.-Based Syst., 240, Article 108071 pp. (2022)
[55] Wang, R. B.; Wang, W. F.; Xu, L.; Pan, J. S.; Chu, S. C.; Chen, C.-H., An adaptive parallel arithmetic optimization algorithm for robot path planning, J. Adv. Transport., 2021, 1-22 (2021)
[56] Izci, D.; Ekinci, S.; Kayri, M.; Eker, E., A novel improved arithmetic optimization algorithm for optimal design of PID controlled and Bode’s ideal transfer function based automobile cruise control system, Evol. Syst. (2021)
[57] Agushaka, J. O.; Ezugwu, A. E., Advanced arithmetic optimization algorithm for solving mechanical engineering design problems, PLoS One., 16, 8, Article e0255703 pp. (2021)
[58] Abualigah, L.; Diabat, A.; Sumari, P.; Gandomi, A. H., A novel evolutionary arithmetic optimization algorithm for multilevel thresholding segmentation of COVID-19 CT images, Processes., 9, 7, 1155 (2021)
[59] Ibrahim, R. A.; Abualigah, L.; Ewees, A. A.; Al-qaness, M. A.A.; Yousri, D.; Alshathri, S.; Abd Elaziz, M., An electric fish-based arithmetic optimization algorithm for feature selection, Entropy, 23, 9 (2021)
[60] Yilmaz, S.; Sen, S., Electric fish optimization: a new heuristic algorithm inspired by electrolocation, Neural Comput. Appl., 32, 15, 11543-11578 (2020)
[61] Ewees, A. A.; Al-qaness, M. A.A.; Abualigah, L.; Oliva, D.; Algamal, Z. Y.; Anter, A. M.; Ali Ibrahim, R.; Ghoniem, R. M.; Abd Elaziz, M., Boosting arithmetic optimization algorithm with genetic algorithm operators for feature selection: Case study on cox proportional hazards model, Mathematics, 9, 18, 2321 (2021)
[62] Zhang, M.; Yang, J.; Ma, R.; Du, Q.; Rodriguez, D., Prediction of small-scale piles by considering lateral deflection based on elman neural network - improved arithmetic optimizer algorithm, ISA T. (2021)
[63] Gul, F.; Mir, I.; Abualigah, L.; Sumari, P., Multi-robot space exploration: An augmented arithmetic approach, IEEE Access, 9, Article 107738-107750 (2021)
[64] Premkumar, M.; Jangir, P.; Kumar, B. S.; Sowmya, R.; Alhelou, H. H.; Abualigah, L.; Yildiz, A. R.; Mirjalili, S., A new arithmetic optimization algorithm for solving real-world multiobjective CEC-2021 constrained optimization problems: Diversity analysis and validations, IEEE Access, 9, 84263-84295 (2021)
[65] Griffiths, E. J.; Orponen, P., Optimization, block designs and no free lunch theorems, Inf. Process. Lett., 94, 55-61 (2005) · Zbl 1192.68263
[66] Service, T. C., A no free lunch theorem for multi-objective optimization, Information Inf. Process. Lett., 110, 21, 917-923 (2010) · Zbl 1379.68180
[67] Wang, Y., Applications of number theoretic methods in approximate analysis, J. Math. Pract. Theory, 72-78 (1980)
[68] Zhang, L.; Zhang, B., Good point set based genetic algorithm, Chinese J. Comput., 917-922 (2001)
[69] Tubishat, M.; Jaafar, S.; Idris, N.; Al-Betar, M.; Alswaitti, M.; Jarrah, H.; Ismail, M. A.; Omar, M., Improved sine cosine algorithm with simulated annealing and singer chaotic map for Hadith classification, Neural Comput. Appl. (2021)
[70] Gressin, A.; Mallet, C.; Demantke, J.; David, N., Towards 3D lidar point cloud registration improvement using optimal neighborhood knowledge, ISPRS J. Photogramm., 79, 240-251 (2013)
[71] Zhao, W.; Du, C.; Jiang, S., An adaptive multiscale approach for identifying multiple flaws based on XFEM and a discrete artificial fish swarm algorithm, Comput. Methods Appl. Mech. Engrg., 339, 341-357 (2018) · Zbl 1440.90095
[72] Meng, T.; Pan, Q. K., An improved fruit fly optimization algorithm for solving the multidimensional knapsack problem, Appl. Soft Comput., 50, 79-93 (2017)
[73] Liu, Y.; Chong, G. S.; Heidari, A. A.; Chen, H. L.; Liang, G. X.; Ye, X. J.; Cai, Z. N.; Wangg, M. J., Horizontal and vertical crossover of Harris hawk optimizer with Nelder-Mead simplex for parameter estimation of photovoltaic models, Energy Convers., 223 (2020)
[74] Liang, B. X.; Zhao, Y. L.; Li, Y., A hybrid particle swarm optimization with crisscross learning strategy, Eng. Appl. Artif. Intell., 105 (2021)
[75] Nadimi-Shahraki, M. H.; Taghian, S.; Mirjalili, S.; Faris, H., MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems, Appl. Soft Comput., 97, Article 106761 pp. (2020)
[76] Biswas, P. P.; Awad, N. H.; Suganthan, P. N.; Ali, M. Z.; Amaratunga, G. A.J., Minimizing THD of multilevel inverters with optimal values of DC voltages and switching angles using LSHADE-EpSin algorithm, (2017 IEEE Congress on Evolutionary Computation (CEC) (2017), IEEE), 77-82
[77] Zhao, W.; Wang, L.; Zhang, Z., Atom search optimization and its application to solve a hydrogeologic parameter estimation problem, Knowl.-Based Syst., 163, 283-304 (2019)
[78] Houssein, E. H.; Saad, M. R.; Hashim, F. A.; Shaban, H.; Hassaballah, M., Lévy Flight distribution: A new metaheuristic algorithm for solving engineering optimization problems, Eng. Appl. Artif. Intell., 94, Article 103731 pp. (2020)
[79] Abdel-Basset, M.; Shawky, L. A., Flower pollination algorithm: a comprehensive review, Artif. Intell. Rev., 52, 4, 2533-2557 (2019)
[80] Khishe, M.; Mosavi, M., Chimp optimization algorithm, Expert Syst. Appl., 149, Article 113338 pp. (2020)
[81] Naruei, I.; Keynia, F., Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems, Eng. Comput. (2021)
[82] Chou, J.-S.; Truong, D.-N., A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean, Appl. Math. Comput., 389, Article 125535 pp. (2021) · Zbl 07329296
[83] Abualigah, L.; Elaziz, M. A.; Sumari, P.; Geem, Z. W.; Gandomi, A. H., Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer, Expert Syst. Appl., 191, Article 116158 pp. (2022)
[84] Hashim, F. A.; Houssein, E. H.; Hussain, K.; Mabrouk, M. S.; Al-Atabany, W., Honey badger algorithm: New metaheuristic algorithm for solving optimization problems, Math. Comput. Simulation, 192, 84-110 (2022) · Zbl 07431717
[85] Yousri, D.; Abd Elaziz, M.; Oliva, D.; Abraham, A.; Alotaibi, M. A.; Hossain, M. A., Fractional-order comprehensive learning marine predators algorithm for global optimization and feature selection, Knowl.-Based Syst., 235, Article 107603 pp. (2022)
[86] Hu, G.; Du, B.; Wang, X.; Wei, G., An enhanced black widow optimization algorithm for feature selection, Knowl.-Based Syst., 235, Article 107638 pp. (2022)
[87] Hu, G.; Zhu, X. N.; Wei, G.; Chang, C. T., An improved marine predators algorithm for shape optimization of developable ball surfaces, Eng. Appl. Artif. Intell., 105, Article 104417 pp. (2021)
[88] Coello Coello, C. A., Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art, Comput. Methods Appl. Mech. Engrg., 191, 11, 1245-1287 (2002) · Zbl 1026.74056
[89] Agushaka, J. O.; Ezugwu, A. E.; Abualigah, L., Dwarf Mongoose optimization algorithm, Comput. Methods Appl. Mech. Engrg., 391, Article 114570 pp. (2022) · Zbl 07487685
[90] Lee, K. S.; Geem, Z. W., A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice, Comput. Methods Appl. Mech. Engrg., 194, 36-38, 3902-3933 (2005) · Zbl 1096.74042
[91] Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M., Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput., 13, 2592-2612 (2013)
[92] Abualigah, L.; Diabat, A., Improved multi-core arithmetic optimization algorithm-based ensemble mutation for multidisciplinary applications, J. Intell. Manuf (2022)
[93] Wu, S.-J.; Chow, P.-T., Steady-state genetic algorithms for discrete optimization of trusses, Comput. Struct., 56, 6, 979-991 (1995) · Zbl 0900.73943
[94] Lee, K. S.; Geem, Z. W.; S.-h. Lee, H.; K.-w. Bae, M., The harmony search heuristic algorithm for discrete structural optimization, Eng. Optim., 37, 7, 663-684 (2005)
[95] Li, L. J.; Huang, Z. B.; Liu, F., A heuristic particle swarm optimization method for truss structures with discrete variables, Comput. Struct., 87, 7, 435-443 (2009)
[96] Kaveh, A.; Talatahari, S., A particle swarm ant colony optimization for truss structures with discrete variables, J. Constr. Steel Res., 65, 8, 1558-1568 (2009)
[97] Gurrola-Ramos, J.; Hernàndez-Aguirre, A.; Dalmau-Cedeño, O., COLSHADE for real-world single-objective constrained optimization problems, (2020 IEEE Congress on Evolutionary Computation (CEC) (2020), IEEE), 1-8
[98] Yokota, T.; Taguchi, T.; Gen, M., A solution method for optimal weight design problem of the gear using genetic algorithms, Comput. Ind. Eng., 35, 3, 523-526 (1998)
[99] Abd Elaziz, M.; Abualigah, L.; Ibrahim, R. A.; Attiya, I., IoT workflow scheduling using intelligent arithmetic optimization algorithm in fog computing, Comput. Intell. Neurosci., 2021, Article 9114113 pp. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.