×

zbMATH — the first resource for mathematics

Empilements de segments et \(q\)-énumération de polyominos convexes dirigés. (Heaps of segments and \(q\)-enumeration of directed convex polyominoes). (French) Zbl 0753.05023
Summary: We enumerate parallelogram polyominoes and directed and convex polyominoes by construting a bijection between parallelogram polyominoes and some heaps of segments. An extension of a Möbius inversion theorem then gives the generating functions.

MSC:
05B50 Polyominoes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andrews, G.E, ()
[2] Bender, E, Convex n-ominoes, Discrete math., 8, 219-226, (1974) · Zbl 0284.05009
[3] \scM. Bousquet-Mélou, Une bijection entre les polyominos convexes dirigés et les mots de Dyck bilatères, RAIRO Inform. Théor. Appl., à paraître. · Zbl 0761.68077
[4] \scM. Bousquet-Mélou, Codage des polyominos convexes et équations pour l’énumération suivant l’aire, à paraitre, Discr. Appl. Math. · Zbl 0788.05020
[5] Cartier, P; Foata, D, Problèmes combinatoires de commutations et réarrangements, () · Zbl 0186.30101
[6] Chang, S.J; Lin, K.Y, Rigourous results for the number of convex polygons on the square and honeycomb lattices, J. phys. A: math. gen., 21, 2635-2642, (1988)
[7] Dhar, D, Equivalence of the two-dimensional directed animal problem to Baxter hard-square lattice-gas model, Phys. rev. lett., 49, 959-962, (1982)
[8] Dhar, D, Exact solution of a directed-site animals enumeration in 3 dimensions, Phys. rev. lett., 59, 853-856, (1983)
[9] \scM. P. Delest et S. Dulucq, Enumeration of directed column-convex animals with given perimeter and area, rapport LaBRI n^o 86-15, Université Bordeaux I, soumis à publication.
[10] \scM. P. Delest et J. M. Fedou, Enumeration of skew Ferrers diagrams, Discrete Math., à paraître. · Zbl 0778.05002
[11] Delest, M.P; Viennot, G, Algebraic languages and polyominoes enumeration, Theoret. comput. sci., 34, 169-206, (1984) · Zbl 0985.68516
[12] Derrida, B; Nadal, J.P; Vannimenus, J, Directed lattices animals in 2 dimensions: numerical and exact results, J. phys., 43, 1561, (1982)
[13] Fedou, J.M, Grammaires et q-énumération de polyominos, () · Zbl 0771.05008
[14] Fedou, J.M, Enumeration of skew Ferrers diagrams and basic Bessel functions, à paraître dans LES actes de, () · Zbl 0771.05008
[15] \scJ. M. Fedou, Exact formulas for fully compact animals, Rapport LaBRI n^o 89-06, Université Bordeaux 1.
[16] Flajolet, P, Combinatorial aspects of continued fractions, Discrete math., 41, 145-153, (1982) · Zbl 0492.05003
[17] \scP. Flajolet, Communication personnelle, 1991.
[18] Gessel, I, A noncommutative generalization and q-analog of the Lagrange inversion formula, Trans. amer. math. soc., 257, 455-482, (1980) · Zbl 0459.05014
[19] Gouyou-Beauchamps, D; Viennot, X.G, Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem, Adv. in appl. math., 9, 334-357, (1988) · Zbl 0727.05036
[20] Hakim, V; Nadal, J.P, Exact result for 2D directed lattice animals on a strip of finite width, J. phys. A: math. gen., 16, L213-L218, (1983)
[21] Klarner, D.A; Rivest, R.L, A procedure for improving the upper bound for the number of n-ominoes, Canad. J. math., 25, 585-602, (1973) · Zbl 0261.05113
[22] Klarner, D.A; Rivest, R.L, Asymptotic bounds for the number of convex n-ominoes, Discrete math., 8, 31-40, (1974) · Zbl 0274.05111
[23] Perrin, D, Partial commutations, (), 637-651
[24] Privman, V; Svrakic, N.M, Exact generating function for fully directed compact lattice animals, Phys. rev. lett., 60, No. 12, 1107-1109, (1988)
[25] Rota, G.C, On the foundations of combinatorial theory I, theory of Möbius functions, Z. wahrsch. verw. gebiete, 2, 340-368, (1964) · Zbl 0121.02406
[26] Temperley, H.N.V, Phys. rev., 103, 1-16, (1956)
[27] Viennot, X.G, “problèmes combinatoires posés par la physique statistique,” Séminaire bourbaki n^o 626, 36ème année, Astérisque, 121-122, 225-246, (1985)
[28] Viennot, X.G, Heaps of pieces I: basic definitions and combinatorial lemmas, () · Zbl 0792.05012
[29] Wright, E.M, Stacks, Quart. J. math. Oxford (2), 19, 313-320, (1968) · Zbl 0253.05007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.